FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
基本信息
- 批准号:2125692
- 负责人:
- 金额:$ 56.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) systems are increasingly used to assist humans in making high-stakes decisions, such as online information curation, resume screening, mortgage lending, police surveillance, public resource allocation, and pretrial detention. While the hope is that the use of algorithms will improve societal outcomes and economic efficiency, concerns have been raised that algorithmic systems might inherit human biases from historical data, perpetuate discrimination against already vulnerable populations, and generally fail to embody a given community's important values. Recent work on algorithmic fairness has characterized the manner in which unfairness can arise at different steps along the development pipeline, produced dozens of quantitative notions of fairness, and provided methods for enforcing these notions. However, there is a significant gap between the over-simplified algorithmic objectives and the complications of real-world decision-making contexts. This project aims to close the gap by explicitly accounting for the context-specific fairness principles of actual stakeholders, their acceptable fairness-utility trade-offs, and the cognitive strengths and limitations of human decision-makers throughout the development and deployment of the algorithmic system. To meet these goals, this project enables close human-algorithm collaborations that combine innovative machine learning methods with approaches from human-computer interaction (HCI) for eliciting feedback and preferences from human experts and stakeholders. There are three main research activities that naturally correspond to three stages of a human-in-the-loop AI system. First, the project will develop novel fairness elicitation mechanisms that will allow stakeholders to effectively express their perceptions on fairness. To go beyond the traditional approach of statistical group fairness, the investigators will formulate new fairness measures for individual fairness based on elicited feedback. Secondly, the project will develop algorithms and mechanisms to manage the trade-offs between the new fairness measures developed in the first step, and multiple existing fairness and accuracy measures. Finally, the project will develop algorithms to detect and mitigate human operators' biases, and methods that rely on human feedback to correct and de-bias existing models during the deployment of the AI system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)系统越来越多地用于协助人类做出高风险决策,例如在线信息管理、简历筛选、抵押贷款、警察监控、公共资源分配和审前拘留。虽然希望算法的使用将改善社会结果和经济效率,但人们也提出了担忧,即算法系统可能会从历史数据中继承人类偏见,使对已经脆弱的人群的歧视永久化,并且通常无法体现特定社区的重要价值观。最近关于算法公平性的研究描述了不公平性在开发过程中不同阶段可能出现的方式,产生了许多关于公平性的定量概念,并提供了执行这些概念的方法。然而,在过度简化的算法目标和现实世界决策环境的复杂性之间存在着显著的差距。该项目旨在通过明确考虑实际利益相关者的特定环境公平原则,他们可接受的公平-效用权衡,以及人类决策者在整个算法系统开发和部署过程中的认知优势和局限性,来缩小差距。为了实现这些目标,该项目实现了密切的人机协作,将创新的机器学习方法与人机交互(HCI)方法相结合,以获取人类专家和利益相关者的反馈和偏好。有三个主要的研究活动,自然对应于人类在循环中的人工智能系统的三个阶段。首先,该项目将开发新的公平激发机制,使利益相关者能够有效地表达他们对公平的看法。为了超越传统的统计群体公平方法,研究者将基于诱导反馈制定新的个体公平度量。其次,该项目将开发算法和机制,以管理第一步开发的新公平指标与多个现有公平和准确性指标之间的权衡。最后,该项目将开发算法来检测和减轻人类操作员的偏见,以及在部署人工智能系统期间依靠人类反馈来纠正和消除现有模型偏见的方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiwei Steven Wu其他文献
Logarithmic Query Complexity for Approximate Nash Computation in Large Games
大型游戏中近似纳什计算的对数查询复杂度
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0.5
- 作者:
P. Goldberg;Francisco Javier Marmolejo;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Competing Bandits: The Perils of Exploration Under Competition
强盗竞争:竞争中探索的危险
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Guy Aridor;Y. Mansour;Aleksandrs Slivkins;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Inducing Approximately Optimal Flow Using Truthful Mediators
使用真实的中介者诱导近似最佳的流动
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ryan M. Rogers;Aaron Roth;Jonathan Ullman;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Provable Multi-Party Reinforcement Learning with Diverse Human Feedback
可证明的多方强化学习与不同的人类反馈
- DOI:
10.48550/arxiv.2403.05006 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Huiying Zhong;Zhun Deng;Weijie J. Su;Zhiwei Steven Wu;Linjun Zhang - 通讯作者:
Linjun Zhang
Membership Inference Attacks on Diffusion Models via Quantile Regression
通过分位数回归对扩散模型进行成员推理攻击
- DOI:
10.48550/arxiv.2312.05140 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shuai Tang;Zhiwei Steven Wu;Sergül Aydöre;Michael Kearns;Aaron Roth - 通讯作者:
Aaron Roth
Zhiwei Steven Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiwei Steven Wu', 18)}}的其他基金
CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
- 批准号:
2339775 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232693 - 财政年份:2023
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
- 批准号:
2120611 - 财政年份:2021
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
- 批准号:
1939606 - 财政年份:2020
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Cooperative Agreement
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Discovery Projects
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Research Grant
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 56.5万 - 项目类别:
Research Grant