NSF-DFG Confine: MolPEC – Molecular Theory of Weak Polyelectrolytes in Confined Space

NSF-DFG Confine:MolPEC — 密闭空间弱聚电解质的分子理论

基本信息

  • 批准号:
    2234013
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-01 至 2025-10-31
  • 项目状态:
    未结题

项目摘要

In this project supported by the Chemical Theory, Models and Computational Methods Program (CTMC) of the Division of Chemistry, Professor Jianzhong Wu of the University of California-Riverside is developing theoretical models that describe a class of polymers known as weak polyelectrolytes (WPEs). This is a collaborative project with researchers from the Georg-August-Universität Göttingen, Germany. WPEs are a large class of macromolecules that may either protonate or deprotonate depending upon the environmental conditions such as pH and salt concentration. Their stimuli-responsive behavior has been broadly utilized in functional “smart” materials for applications such as targeted drug delivery or underwater adhesion. Whereas practical applications often entail chemical and physical processes under spatial confinement, the structure and dynamics of WPEs remain incompletely understood due to the strong coupling of reaction and polymer-mediated correlations at both monomer and polymer scales. The rational design of WPE systems is calling for advances in theoretical and computational methods that are able to accurately describe confinement effects on local solution environment, protonation/deprotonation equilibrium, and the dynamics of polymers reacting with ionizable surfaces. This research aims to develop a theoretical framework for describing the properties of WPEs in confined space and their responses to environmental conditions including solution pH, electrolyte composition, and the chemistry of confinement. We will utilize these techniques to investigate the interplay between ionic size, valence, ionization, surface reactions and the dynamics of polymer binding that cannot be reliably addressed with conventional methods. The theoretical and computational advances will contribute to a rational design of weak polyelectrolyte systems for a wide spectrum of technological applications. Building on complementary advances in polymer density functional theory (PDFT) and molecular simulation, the US-German team will study the structure, thermodynamics, and dynamics of weak polyelectrolytes at and between surfaces. The idea is to combine and extend Ising Density Functional Theory (iDFT) and Single-Chain-in-Mean-Field (SCMF) simulation. iDFT considers single-chain configurations and ionization states of segments on equal footing and captures liquid-like packing and electrostatic correlations via the molecular density. The joint probability distribution of configurations and ionization states of an entire macromolecule is dictated by a single-chain potential, which, in turn, is a functional of the molecular density. The high-dimensional molecular density will be efficiently evaluated via SCMF simulation on parallel, GPU-accelerated supercomputers, employing the iDFT single-chain potential. The team will extend the simulation code, SOft coarse-grained Monte-carlo Acceleration (SOMA), to incorporate electrostatic interactions and nonlocal interactions along the molecular contour. The particle-based simulation, Dynamic-iDFT (D-iDFT), accounts for long-range fluctuations and allows us to study the configuration dynamics. Additionally, we will derive a segment-based dynamic iDFT (SD-iDFT) for describing the local polymer mass and charge density in response to environmental changes. The generic nature of the theoretical techniques proposed in this work ensures broad applications to diverse phenomena in polymeric and biological systems. This project will provide training opportunities for early career scientists to gain interdisciplinary research experience and cultivate their career interests in computational molecular engineering. In addition to supporting graduate students, it offers research-based thesis projects for undergrads in active military service, veterans, and students from the University Honors Program (UHP). This project is being awarded through the “Chemistry and Transport in Confined Spaces (NSF-DFG Confine)" opportunity, a collaborative solicitation that involves the National Science Foundation and Deutsche Forschungsgemeinschaft (DFG).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学理论,化学理论支持化学理论的支持下,化学划分的模型和计算方法计划(CTMC),加利福尼亚 - 里弗赛大学的江港教授正在开发理论模型,这些模型描述了一类称为弱聚电解质的聚合物(WPES)。这是一个合作项目,与来自德国乔治 - 奥格斯特·戈丁根的研究人员。 WPE是一大类的大分子,可以根据pH和盐浓度等环境条件,可能质子培或去质子酸盐。它们的刺激性反应性行为已广泛用于功能性的“智能”材料中,以用于靶向药物或水下依从性。尽管实际应用通常需要在空间限制下进行化学和物理过程,但由于单体和聚合物尺度的反应和聚合物介导的相关性的强烈耦合,WPE的结构和动力学仍未完全理解。 WPE系统的合理设计呼吁在理论和计算方法中取得进步,这些方法能够准确地描述对局部溶液环境,质子化/去质子化等效效果以及聚合物的动力学对电离表面反应的动力学。这项研究旨在开发一个理论框架,以描述限制空间中WPE的特性及其对环境条件的反应,包括溶液pH,电解质组成和限制化学。我们将利用这些技术来研究离子大小,价,电离,表面反应与聚合物结合的动力学之间的相互作用,这些动态无法用常规方法可靠地解决。理论和计算进步将有助于多种技术应用的弱聚电解质系统的合理设计。美国 - 德国团队的基础是聚合物密度功能理论(PDFT)和分子模拟的基础上,将研究表面和表面之间弱聚电解质的结构,热力学和动力学。这个想法是结合和扩展Ising密度功能理论(IDFT)和单链磁场(SCMF)模拟。 IDFT考虑了相等地位的片段的单链构型和电离状态,并通过分子密度捕获液状填料和静电相关性。整个大分子的构型和电离状态的关节概率分布取决于单链电位,这反过来又是分子密度的功能。高维分子密度将通过使用IDFT单链电位在平行的,GPU加速的超级计算机上通过SCMF模拟进行有效评估。该团队将扩展模拟代码,即软颗粒的蒙特卡洛加速度(SOMA),以结合沿分子轮廓的静电相互作用和非局部相互作用。基于粒子的仿真动态idft(d-idft)是远程波动的解释,并使我们能够研究配置动力学。此外,我们将得出一个基于段的动态IDFT(SD-IDFT),用于描述局部聚合物质量和电荷密度,以响应环境变化。这项工作提出的理论技术的通用性质可确保对聚合物和生物系统中潜水现象的广泛应用。该项目将为早期的职业科学家提供培训机会,以获得跨学科研究经验,并培养其在计算分子工程方面的职业兴趣。除了支持研究生外,它还为现役兵役,退伍军人和大学荣誉计划(UHP)的本科生提供基于研究的论文项目。该项目是通过“封闭空间(NSF-DFG限制)的化学和运输”机会授予的,这是一种协作招标,其中涉及国家科学基金会和德意志福斯施加斯格梅夏夫特(DFG)。该奖项反映了NSF的法定任务,并通过评估了CRETIRETIRATIL IDECTIAL IXPERTIAL IFFICTIAL MERITIAL MERITIAL和FORGIALIAL和FRADICAIL和FRODIARIAL和FRODIARIARIAL和FRODIRIAL和FRODIARIARIAL和FRODIARIARIARIARIATIAL。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Molecular Theory of Polypeptide Adsorption at Inorganic Surfaces
无机表面多肽吸附的分子理论
  • DOI:
    10.1021/acs.jpcb.2c06607
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gallegos, Alejandro;Wu, Jianzhong
  • 通讯作者:
    Wu, Jianzhong
Hierarchical Model of Weak Polyelectrolytes with Ionization and Conformation Consistency
具有电离和构象一致性的弱聚电解质的层次模型
  • DOI:
    10.1021/acs.macromol.2c01910
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Gallegos, Alejandro;Wu, Jianzhong
  • 通讯作者:
    Wu, Jianzhong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianzhong Wu其他文献

Electrostatic regulation of genome packaging in human hepatitis B virus.
人类乙型肝炎病毒基因组包装的静电调节。
  • DOI:
    10.1016/j.bpj.2009.01.009
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    T. Jiang;Zhen‐Gang Wang;Jianzhong Wu
  • 通讯作者:
    Jianzhong Wu
Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
各向异性离子形状对双电层结构和电容的影响:蒙特卡罗和密度泛函研究。
  • DOI:
    10.1063/1.4817325
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lamperski;M. Kaja;L. B. Bhuiyan;Jianzhong Wu;D. Henderson
  • 通讯作者:
    D. Henderson
A modular approach to integrated energy distribution system analysis
综合能源分配系统分析的模块化方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rees;Jianzhong Wu;Bieshoy Awad;J. Ekanayake;N. Jenkins
  • 通讯作者:
    N. Jenkins
Band Anticrossing and Related Electronic Structure in III–N-V Alloys
III-N-V 合金中的能带反交叉及相关电子结构
  • DOI:
    10.1016/b978-008044502-1/50010-x
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Walukiewicz;W. Shan;Jianzhong Wu;K. Yu;J. Ager
  • 通讯作者:
    J. Ager
Optimal Planning for Partially Self-Sufficient Microgrid With Limited Annual Electricity Exchange With Distribution Grid
与配电网年换电量有限的部分自给微电网优化规划
  • DOI:
    10.1109/access.2019.2936762
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Qifang Chen;Mingchao Xia;Yue Zhou;Hanmin Cai;Jianzhong Wu;Haibo Zhao
  • 通讯作者:
    Haibo Zhao

Jianzhong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianzhong Wu', 18)}}的其他基金

Multi-energy Control of Cyber-Physical Urban Energy Systems (MC2)
信息物理城市能源系统的多能控制(MC2)
  • 批准号:
    EP/T021969/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: Integrating Physics and Generative Machine Learning Models for Inverse Materials Design
合作研究:将物理与生成机器学习模型相结合进行逆向材料设计
  • 批准号:
    1940118
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
NSF Workshop: New Vistas in Molecular Thermodynamics: Experimentation, Modeling and Inverse Design
NSF 研讨会:分子热力学新前景:实验、建模和逆向设计
  • 批准号:
    1807368
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Theory and Application of Polyelectrolyte Complexation
聚电解质络合理论与应用
  • 批准号:
    1404046
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Increasing the Observability of Electrical Distribution Systems using Smart Meters (IOSM)
使用智能电表 (IOSM) 提高配电系统的可观测性
  • 批准号:
    EP/J00944X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
EAGER: Design and synthesis of metal-organic frameworks for efficient hydrogen storage
EAGER:设计和合成用于高效储氢的金属有机框架
  • 批准号:
    1111731
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Condensation and Icing at Superhydrophobic Surfaces
合作研究:超疏水表面的凝结和结冰
  • 批准号:
    1000597
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Workshop: Molecular Models for Carbon-Neutral Industrialization : March 25-27, 2010, Palm Springs, CA
研讨会:碳中和工业化的分子模型:2010 年 3 月 25 日至 27 日,加利福尼亚州棕榈泉
  • 批准号:
    0938198
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Theory and application of polyelectrolyte complexation
聚电解质络合理论与应用
  • 批准号:
    0852353
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Thermodynamics for Molecular Engineering
分子工程热力学
  • 批准号:
    0651983
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
  • 批准号:
    61107087
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
  • 批准号:
    60878063
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
  • 批准号:
    60577006
  • 批准年份:
    2005
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234135
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
NSF-DFG Confine:在受限的二维微流中反应前体/溶剂微滴,以实现定制的纳米材料合成
  • 批准号:
    2234283
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Drying-induced assembly of colloidal supraparticles from anisotropic nanoparticles
NSF-DFG Confine:干燥诱导各向异性纳米粒子组装胶体超粒子
  • 批准号:
    2223084
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了