NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces

NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感

基本信息

  • 批准号:
    2223461
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging Program (CMI) in the Division of Chemistry, Carlos Meriles of CUNY City College and Nicolas Giovambattista of CUNY Brooklyn College are using atomic defects near the surface of a host crystal as nanoscale probes to characterize the structure and motion of water molecules confined to extremely small spaces (at the nanometer scale). Strong confinement modifies water in ways that are central to technological applications, but the small sample dimensions and the heterogeneities of the confining surfaces makes it challenging for experimentalists to provide detailed information on the molecular behavior at the nanoscale. To mitigate these limitations, Dr. Meriles and his students are developing a sensing approach based on individual point defects in diamond that can serve as a detector of small amounts of liquids in general, and water, in particular. Dr. Giovambattista and his students are using computer simulations and theoretical modeling to help interpret the signals that come from these point-defect-aided measurements. Activities also include the exchange of graduates and postdocs between the US and collaborators at the University of Stuttgart in Germany, an initiative aimed at simultaneously enriching the professional training and networking opportunities of all participating students. Enabling this research program is the so-called nitrogen-vacancy (NV) center in diamond, a paramagnetic defect whose charge and spin states can be prepared and readout by all-optical means. The overarching goals revolve around two research thrusts: (i) The first one capitalizes on novel NV-based magnetic resonance spectroscopy methods to investigate water diffusion under variable confinement and surface hydrophobicity within ad-hoc nanostructures produced via 2D-material engineering; also part of this effort is the development of alternative sensing strategies adapted to heavy water, an area where activities include both experiments and path-integral molecular dynamics simulations. (ii) The second research thrust zeroes in on the use of external magnetic gradients, here leveraged to non-invasively probe molecular diffusion and image surface-induced order in confined water. Of special interest is the investigation of hydration at boundaries separating hydrophobic and hydrophilic sections of engineered substrates based on 2D materials. The results derived from this effort may prove relevant to various open problems of fundamental and practical importance, such as the interplay between nanoscale confinement and chemical reactivity, or the impact of confined water in biological processes such as ion flow in cell membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目(CMI)的支持下,纽约市立大学城市学院的卡洛斯梅里尔斯和纽约市立大学布鲁克林学院的尼古拉斯乔万巴蒂斯塔正在使用宿主晶体表面附近的原子缺陷作为纳米级探针来表征限制在极小空间(纳米尺度)内的水分子的结构和运动。强约束以技术应用的核心方式改变水,但是小样品尺寸和约束表面的不均匀性使得实验人员难以提供纳米级分子行为的详细信息。为了减轻这些限制,Meriles博士和他的学生正在开发一种基于钻石中单个点缺陷的传感方法,该方法可以作为一般少量液体的检测器,特别是水。Giovambattista博士和他的学生正在使用计算机模拟和理论建模来帮助解释来自这些点缺陷辅助测量的信号。活动还包括美国与德国斯图加特大学合作者之间的毕业生和博士后交流,这一举措旨在同时丰富所有参与学生的专业培训和网络机会。 使这项研究计划成为可能的是金刚石中所谓的氮空位(NV)中心,这是一种顺磁性缺陷,其电荷和自旋状态可以通过全光学手段制备和读出。总体目标围绕着两个研究方向:(i)第一个是利用新型的基于NV的磁共振光谱方法,研究通过2D材料工程产生的自组织纳米结构中可变限制和表面疏水性下的水扩散;该努力的另一部分是开发适用于重水的替代感测策略,该领域的活动包括实验和路径积分分子动力学模拟。(ii)第二项研究致力于使用外部磁梯度,在这里利用非侵入性探测分子扩散和图像表面诱导的秩序在承压水中。特别感兴趣的是研究基于2D材料的工程基底的疏水部分和亲水部分之间的边界处的水合作用。从这项工作中得出的结果可能证明与各种具有基础和实际重要性的开放问题有关,例如纳米级限制和化学反应性之间的相互作用,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查进行评估来支持的搜索.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harvesting Energy from Changes in Relative Humidity Using Nanoscale Water Capillary Bridges
利用纳米级水毛细管桥从相对湿度的变化中收集能量
  • DOI:
    10.1021/acs.langmuir.3c01051
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tang, Binze;Buldyrev, Sergey V.;Xu, Limei;Giovambattista, Nicolas
  • 通讯作者:
    Giovambattista, Nicolas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Meriles其他文献

Carlos Meriles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Meriles', 18)}}的其他基金

GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
  • 批准号:
    2203904
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
  • 批准号:
    2216838
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
  • 批准号:
    1914945
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
  • 批准号:
    1903839
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
  • 批准号:
    1726573
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
  • 批准号:
    1619896
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
  • 批准号:
    1401632
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
  • 批准号:
    1309640
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
  • 批准号:
    1314205
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
  • 批准号:
    1111410
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234135
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
NSF-DFG Confine:在受限的二维微流中反应前体/溶剂微滴,以实现定制的纳米材料合成
  • 批准号:
    2234283
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Drying-induced assembly of colloidal supraparticles from anisotropic nanoparticles
NSF-DFG Confine:干燥诱导各向异性纳米粒子组装胶体超粒子
  • 批准号:
    2223084
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
  • 批准号:
    2223407
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: MolPEC – Molecular Theory of Weak Polyelectrolytes in Confined Space
NSF-DFG Confine:MolPEC — 密闭空间弱聚电解质的分子理论
  • 批准号:
    2234013
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Diffusion of Water Confined in Patterned Hydrophilic-Hydrophobic Nanopores
NSF-DFG 限制:图案化亲水-疏水纳米孔中限制的水的扩散
  • 批准号:
    2223442
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation
NSF-DFG Confine:纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动
  • 批准号:
    2234028
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234134
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Chemically-induced phoretic flow, or how to turn a curtain of light into virtual micro-fluidic boundaries
NSF-DFG Confine:化学诱导泳流,或如何将光幕转变为虚拟微流体边界
  • 批准号:
    2223481
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了