CAREER: Near-Critical Heat Transfer

职业:近临界传热

基本信息

  • 批准号:
    2235356
  • 负责人:
  • 金额:
    $ 52.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

At high temperatures and pressures, fluids can exist above a critical point where they can transition between “liquid-like” and “gas-like” properties without undergoing a phase change (such as the formation of bubbles or droplets). Recently, supercritical fluids have gained significant interest as working fluids in highly efficient engines, advanced aerospace applications, and electronics cooling. Supercritical fluids near the critical point have unique thermophysical properties that often provide enhanced heat transfer, but these properties can also lead to damaging flow instabilities and degraded heat transfer during certain operating conditions. The cause and control of these damaging near-critical degradations and oscillations are not well understood. This project will use a novel experimental approach to understand the physical phenomena that govern the heat transfer properties of near-critical fluids in order to predict and control their potentially damaging effects. In addition to the research objectives, this work will be linked with the development of a unique educational program dedicated to developing globally competent engineers prepared to bring supercritical technology to the market.Specifically, this research will use fiber optic sensors to measure transient convective heat transfer of supercritical fluids, and use the data to develop transient models of conjugate heat transfer in tailored, non-homogenous, heat exchanger substrates. This proposed work will provide fundamental insights on the relationship between buoyancy, flow acceleration, and varying thermophysical properties on the unsteady convective heat transfer coefficient of supercritical fluids, and new information on the evolution of high- and low-frequency flow oscillations during transients of supercritical fluids. Established theory and models developed for steady state conditions will be evaluated using experiments more representative of actual supercritical system operation. Data will be used to guide the modeling of conjugate effects in non-homogeneous substrates, laying the groundwork for components fabricated through new manufacturing techniques. Finally, the demonstration of the fiber optic instruments for distributed high accuracy heat transfer experiments is of value to the broader thermal transport community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
At high temperatures and pressures, fluids can exist above a critical point where they can transition between “liquid-like” and “gas-like” properties without undergoing a phase change (such as the formation of bubbles or droplets). Recently, supercritical fluids have gained significant interest as working fluids in highly efficient engines, advanced aerospace applications, and electronics cooling. Supercritical fluids near the critical point have unique thermophysical properties that often provide enhanced heat transfer, but these properties can also lead to damaging flow instabilities and degraded heat transfer during certain operating conditions.这些破坏性的近临界退化和振荡的原因和控制尚不清楚。 This project will use a novel experimental approach to understand the physical phenomena that govern the heat transfer properties of near-critical fluids in order to predict and control their potentially damaging effects. In addition to the research objectives, this work will be linked with the development of a unique educational program dedicated to developing globally competent engineers prepared to bring supercritical technology to the market.Specifically, this research will use fiber optic sensors to measure transient convective heat transfer of supercritical fluids, and use the data to develop transient models of conjugate heat transfer in tailored, non-homogenous, heat exchanger substrates. This proposed work will provide fundamental insights on the relationship between buoyancy, flow acceleration, and varying thermophysical properties on the unsteady convective heat transfer coefficient of supercritical fluids, and new information on the evolution of high- and low-frequency flow oscillations during transients of supercritical fluids. Established theory and models developed for steady state conditions will be evaluated using experiments more representative of actual supercritical system operation. Data will be used to guide the modeling of conjugate effects in non-homogeneous substrates, laying the groundwork for components fabricated through new manufacturing techniques. Finally, the demonstration of the fiber optic instruments for distributed high accuracy heat transfer experiments is of value to the broader thermal transport community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Fronk其他文献

Brian Fronk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Fronk', 18)}}的其他基金

CAREER: Near-Critical Heat Transfer
职业:近临界传热
  • 批准号:
    1943458
  • 财政年份:
    2020
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational and Experimental Investigation of High-Flux Heating of Supercritical Fluids in Microscale Geometries
合作研究:微尺度几何结构中超临界流体高通量加热的计算和实验研究
  • 批准号:
    1604433
  • 财政年份:
    2016
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant

相似国自然基金

CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
  • 批准号:
    32371521
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可编程CRISPR/Cas体系诱导NEAR多重扩增结合上转换荧光纳米探针用于病原体高灵敏可视化检测方法研究
  • 批准号:
    32001786
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于NEAR放大及发射光叠加信号分析的高灵敏可视化双食源性病毒检测方法研究
  • 批准号:
    31701683
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
赌博游戏中near-miss 效应发生的认知神经机制及其病理研究
  • 批准号:
    31400908
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Near完美非线性函数及有关课题研究
  • 批准号:
    11226282
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Nonlinear critical point theory near singular solutions
奇异解附近的非线性临界点理论
  • 批准号:
    EP/W026597/1
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Research Grant
Superconductivity parity and magnetic frustration near quantum critical point of chiral symmetry structure
手性对称结构量子临界点附近的超导宇称和磁挫败
  • 批准号:
    20H01848
  • 财政年份:
    2020
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Near-Critical Heat Transfer
职业:近临界传热
  • 批准号:
    1943458
  • 财政年份:
    2020
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
NMR study of superconducting state near upper critical field
上临界场附近超导态的核磁共振研究
  • 批准号:
    19K14657
  • 财政年份:
    2019
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Superconductivity of SrTiO3 near a non-magnetic quantum critical point
SrTiO3在非磁量子临界点附近的超导性
  • 批准号:
    19H01844
  • 财政年份:
    2019
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Full waveform modeling and inversion of seismic attenuation and application to characterizing near-surface fractures at Susquehanna Shale Hills Critical Zone Observatory
地震衰减的全波形建模和反演以及用于表征萨斯奎哈纳页岩山关键区域观测站近地表裂缝的应用
  • 批准号:
    1919650
  • 财政年份:
    2019
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Search for a Kondo semiconducting state near the quantum critical point under high pressure
寻找高压下量子临界点附近的近藤半导体态
  • 批准号:
    18K18737
  • 财政年份:
    2018
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Measurement of Aerodynamic Forces near Critical Reynolds Number Acting on a Rotating Sphere
作用在旋转球体上的接近临界雷诺数的空气动力的测量
  • 批准号:
    18K17851
  • 财政年份:
    2018
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Closed-form elastic-plastic response of buildings subjected to critical near-fault ground motion and critical long-period ground motion
临界近断层地震动和临界长周期地震动下建筑物的闭式弹塑性响应
  • 批准号:
    17K18922
  • 财政年份:
    2017
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Speciation of Metal Borates and Polyvalent Cations in Near Critical Aqueous Solutions
近临界水溶液中金属硼酸盐和多价阳离子的形态
  • 批准号:
    489554-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了