NSF Convergence Accelerator Track H: Convergent, Human-Centered Design for Making Voice-Activated AI Accessible and Fair to People Who Stutter
NSF 融合加速器轨道 H:融合、以人为本的设计,使语音激活人工智能对口吃者来说更容易使用且公平
基本信息
- 批准号:2235916
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Disfluencies in speech are common artifacts in conversation, but they are especially prevalent in individuals who stutter, a community of more than 70 million people worldwide. It is well-documented that people who stutter consistently experience employment discrimination, diminished labor market outcomes, and societal stigma. The increasingly pervasive use of exclusionary voice-activated artificial intelligence (AI), which are designed, trained, and tested without considering communication that varies from societal norms, can act as a barrier to daily life participation and employment access for communities such as individuals who stutter. Worse, such technology can actively discriminate against people with speech differences in employment contexts. Therefore, there is an immediate and compelling need for efforts to reduce these barriers and empower people with communication differences and disorders to fully and equitably access all forms of speech recognition systems, including personal voice assistants, automated phone interfaces, and job-preparation and hiring software. This Convergence Accelerator project proposes a multidisciplinary, use-inspired approach that leverages cutting-edge advances in AI, as well as deep understanding of the nature and experience of stuttering, and the legal, ethical, and labor market implications of increased use of voice-activated systems. In partnership with diverse stakeholders, the project will develop and distribute high-impact solutions to a major national and global challenge: accessibility and fairness of voice-activated AI for disfluent speech. Improving the ability of voice-activated AI to appropriately parse and decode disfluent speech will increase quality of life, equality of opportunity, and access, not just for people who stutter, but also for other vulnerable populations and for society at large because all speakers are disfluent to some extent.The goal of this Convergence Accelerator project is to resolve limitations in voice technology by developing and implementing policy-, advocacy-, and AI-based solutions to make voice technology accessible and fair to people who stutter. The project will contribute to advancing knowledge through development of inclusive training and test datasets as well as annotation for accessible automatic speech recognition (ASR) and development of novel ASR deep learning models. Proposed research studies will establish a convergent and holistic understanding of how the nature and experience of stuttering impacts and intersects with AI accessibility and fairness in voice-activated technology, identify barriers and facilitators of access to existing voice-activated AI among people who stutter, and evaluate the effectiveness of guidelines and audit tools. Finally, this activity will engage a multidisciplinary and multisectoral network of partners to ensure participatory research design with a focused plan to recruit diverse participants, widespread dissemination of findings, and uptake of new, accessible technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
说话不流利是交谈中常见的现象,但在口吃者中尤为普遍,全世界有7000多万口吃者。有充分的证据表明,口吃者经常遭受就业歧视、劳动力市场结果下降和社会耻辱。排斥性语音激活人工智能(AI)的使用越来越普遍,这些人工智能的设计、训练和测试都没有考虑到与社会规范不同的沟通方式,这可能会成为口吃者等社区参与日常生活和就业机会的障碍。更糟糕的是,这种技术可能会在就业环境中积极歧视有语言差异的人。因此,迫切需要努力减少这些障碍,并使有沟通差异和障碍的人能够充分和公平地使用各种形式的语音识别系统,包括个人语音助理、自动电话界面以及就业准备和招聘软件。“融合加速器”项目提出了一种多学科、以使用为灵感的方法,利用人工智能的前沿进展,深入了解口吃的本质和经历,以及增加使用语音激活系统对法律、伦理和劳动力市场的影响。该项目将与不同利益攸关方合作,开发和分发具有高影响力的解决方案,以应对一项重大的国家和全球挑战:语音激活人工智能对不流利语音的可及性和公平性。提高声控人工智能适当解析和解码不流利语音的能力,将提高生活质量、机会平等和获取机会,不仅对口吃者如此,对其他弱势群体和整个社会也是如此,因为所有说话的人都在某种程度上不流利。“融合加速器”项目的目标是通过制定和实施政策、宣传和基于人工智能的解决方案,解决语音技术的局限性,使语音技术对口吃者来说是可获得和公平的。该项目将通过开发包容性训练和测试数据集,以及为无障碍自动语音识别(ASR)提供注释和开发新的ASR深度学习模型,促进知识的进步。拟议的研究将对口吃的性质和经历如何影响语音激活技术中人工智能的可及性和公平性建立一个融合和整体的理解,确定口吃者使用现有语音激活人工智能的障碍和促进因素,并评估指导方针和审计工具的有效性。最后,这项活动将使一个多学科和多部门的伙伴网络参与进来,以确保参与性研究设计有重点的计划,以招募不同的参与者,广泛传播研究结果,并采用新的、可获得的技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nihar Mahapatra其他文献
Neutrophil Lymphocyte Ratio can Preempt Development of Sepsis After Adult Living Donor Liver Transplantation.
中性粒细胞比率可以预防成人活体供肝移植后脓毒症的发生。
- DOI:
10.1016/j.jceh.2021.11.008 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
S. Sarin;V. Pamecha;P. Sinha;Nilesh S Patil;Nihar Mahapatra - 通讯作者:
Nihar Mahapatra
Nihar Mahapatra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nihar Mahapatra', 18)}}的其他基金
NSF Convergence Accelerator Track H: An Inclusive, Human-Centered, and Convergent Framework for Transforming Voice AI Accessibility for People Who Stutter
NSF 融合加速器轨道 H:一个包容性、以人为本的融合框架,用于改变口吃者的语音 AI 可访问性
- 批准号:
2345086 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): AI-Based Decision Support for Linking Workers with Future Jobs and for Planning Work Transition and Career Pathway
融合加速器第一阶段 (RAISE):基于人工智能的决策支持,用于将工人与未来工作联系起来并规划工作过渡和职业道路
- 批准号:
1936857 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
AF: Small: Accurate, Biochemically-Relevant, and Robust Scoring Functions for Protein-Ligand Binding Affinity Prediction
AF:小:用于蛋白质-配体结合亲和力预测的准确、生化相关且稳健的评分功能
- 批准号:
1117900 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
- 批准号:
0627835 - 财政年份:2005
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
- 批准号:
0102830 - 财政年份:2001
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant














{{item.name}}会员




