AF: Small: Accurate, Biochemically-Relevant, and Robust Scoring Functions for Protein-Ligand Binding Affinity Prediction

AF:小:用于蛋白质-配体结合亲和力预测的准确、生化相关且稳健的评分功能

基本信息

  • 批准号:
    1117900
  • 负责人:
  • 金额:
    $ 32.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Protein-ligand binding affinity is the principal determinant of many vital processes, such as cellular signaling, gene regulation, metabolism, and immunity, that depend upon proteins binding to some substrate molecule. Consequently, it has a central role in drug design. Due to prohibitive costs and delays associated with experimental drug discovery, academia and pharmaceutical and biotechnology companies rely on virtual screening using computational molecular docking. Typically, this involves docking of tens of thousands to millions of ligand candidates into a target protein receptor?s binding site and using a suitable scoring function to evaluate the binding affinity of each candidate to identify the top candidates as leads or promising protein inhibitors. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein?s binding site and its computational complexity have a significant bearing on the accuracy and throughput of virtual screening. However, current state-of-the-art scoring functions have a number of deficiencies, including either mediocre accuracy for affinity prediction or low throughput, inconsistent accuracy, inflexibility in accuracy-throughput trade-off provided, and reliance on only a single category of scoring function.INTELLECTUAL MERIT: Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes remains one of the most challenging problems in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. We seek to address this problem by developing efficient discrete optimization algorithms that facilitate: (1) the design of accurate, high-throughput single and multi SF methods with provable optimality for a given protein-ligand complex dataset; (2) determination of biochemically-relevant SFs through novel biochemical rule filters that suitably constrain the protein-ligand complex features selected; (3) prediction robustness through a novel multi-SF approach that reduces the variance in accuracy associated with relying on only a single SF; and (4) flexibility in accuracy-throughput tradeoff provided through a new integrated dynamic multi-SF approach. BROADER IMPACTS: This project will have a number of broader impacts: (1) public health benefits by facilitating efficient and cost-effective drug discovery, which in turn helps lower drug costs and improves affordability; (2) impact on other domains where scoring function type approaches are used; (3) interdisciplinary training of students in an important application area; (4) dissemination of research and software artifacts developed during the project; and (5) participation and training of underrepresented groups and K-12 outreach.
蛋白质-配体结合亲和力是许多重要过程的主要决定因素,如细胞信号传导、基因调控、代谢和免疫,这些过程依赖于蛋白质与某些底物分子的结合。因此,它在药物设计中起着核心作用。由于高昂的成本和与实验药物发现相关的延迟,学术界、制药和生物技术公司依赖于使用计算分子对接的虚拟筛选。通常,这涉及到成千上万的候选配体与靶蛋白受体对接。S结合位点,并使用合适的评分函数来评估每个候选物的结合亲和力,以确定最佳候选物作为先导或有希望的蛋白质抑制剂。由于评分函数(SF)用于对药物先导物进行评分、排序和识别,它预测候选配体对蛋白质的亲和力的保真度如何?S结合位点及其计算复杂度对虚拟筛选的准确性和通量有重要影响。然而,目前最先进的评分函数有许多不足之处,包括亲和力预测的准确度一般或吞吐量低,准确性不一致,准确度和吞吐量之间的权衡缺乏灵活性,以及仅依赖单一类别的评分函数。知识价值:准确预测大量不同蛋白质配体复合物的结合亲和力仍然是计算生物分子科学中最具挑战性的问题之一,在药物发现、化学生物学和结构生物学中都有应用。我们试图通过开发有效的离散优化算法来解决这个问题,这些算法有助于:(1)设计精确,高通量的单和多SF方法,并具有给定蛋白质配体复合物数据集的可证明的最优性;(2)通过新的生化规则过滤器来确定生物化学相关的SFs,这些规则过滤器适当地约束了所选择的蛋白质-配体复合物的特征;(3)通过一种新颖的多SF方法,减少了仅依赖单一SF的准确度方差,从而实现了预测的稳健性;(4)通过一种新的集成动态多sf方法提供了精度-吞吐量权衡的灵活性。更广泛的影响:该项目将产生一些更广泛的影响:(1)通过促进高效和具有成本效益的药物发现,从而有助于降低药物成本和提高可负担性,从而造福公共卫生;(2)对使用评分函数型方法的其他领域的影响;(3)对学生进行重要应用领域的跨学科培养;(4)传播项目期间开发的研究成果和软件工件;(5)弱势群体的参与和培训以及K-12外展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nihar Mahapatra其他文献

Neutrophil Lymphocyte Ratio can Preempt Development of Sepsis After Adult Living Donor Liver Transplantation.
中性粒细胞比率可以预防成人活体供肝移植后脓毒症的发生。

Nihar Mahapatra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nihar Mahapatra', 18)}}的其他基金

NSF Convergence Accelerator Track H: An Inclusive, Human-Centered, and Convergent Framework for Transforming Voice AI Accessibility for People Who Stutter
NSF 融合加速器轨道 H:一个包容性、以人为本的融合框架,用于改变口吃者的语音 AI 可访问性
  • 批准号:
    2345086
  • 财政年份:
    2023
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Convergent, Human-Centered Design for Making Voice-Activated AI Accessible and Fair to People Who Stutter
NSF 融合加速器轨道 H:融合、以人为本的设计,使语音激活人工智能对口吃者来说更容易使用且公平
  • 批准号:
    2235916
  • 财政年份:
    2022
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): AI-Based Decision Support for Linking Workers with Future Jobs and for Planning Work Transition and Career Pathway
融合加速器第一阶段 (RAISE):基于人工智能的决策支持,用于将工人与未来工作联系起来并规划工作过渡和职业道路
  • 批准号:
    1936857
  • 财政年份:
    2019
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
  • 批准号:
    0627835
  • 财政年份:
    2005
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Continuing Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
  • 批准号:
    0102830
  • 财政年份:
    2001
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2309253
  • 财政年份:
    2023
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
  • 批准号:
    2312102
  • 财政年份:
    2023
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Continuing Grant
CSR: Small: RUI: Octopus OS: A High-Performance Cloud OS with Accurate Resource Abstraction.
CSR:小型:RUI:Octopus OS:具有准确资源抽象的高性能云操作系统。
  • 批准号:
    2324923
  • 财政年份:
    2023
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
III: Small: Towards Highly Accurate Map Services
III:小:迈向高精度地图服务
  • 批准号:
    2203553
  • 财政年份:
    2022
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
I-Corps: A novel gene assay for accurate prognosis and prediction of clinical benefits of chemotherapy for early-stage non-small cell lung cancer
I-Corps:一种新型基因检测,用于准确预后和预测早期非小细胞肺癌化疗的临床益处
  • 批准号:
    2221895
  • 财政年份:
    2022
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155097
  • 财政年份:
    2022
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
FET: Small: Accurate and Scalable Methods for Analysis of Complex Genomic Populations
FET:小型:用于分析复杂基因组群体的准确且可扩展的方法
  • 批准号:
    2109983
  • 财政年份:
    2021
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
CHS: Small: Developing and Validating a Physically Accurate Light-Scattering Model for the Rendering of Bird and Other Dinosaur Feathers
CHS:小型:开发和验证用于渲染鸟类和其他恐龙羽毛的物理精确光散射模型
  • 批准号:
    2007974
  • 财政年份:
    2021
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Continuing Grant
AF: Small: Shortest Paths and Distance Parameters: Faster, Fault-Tolerant and More Accurate
AF:小:最短路径和距离参数:更快、容错且更准确
  • 批准号:
    2129139
  • 财政年份:
    2021
  • 资助金额:
    $ 32.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了