Convergence Accelerator Phase I (RAISE): AI-Based Decision Support for Linking Workers with Future Jobs and for Planning Work Transition and Career Pathway

融合加速器第一阶段 (RAISE):基于人工智能的决策支持,用于将工人与未来工作联系起来并规划工作过渡和职业道路

基本信息

  • 批准号:
    1936857
  • 负责人:
  • 金额:
    $ 40.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project relate to the ways in which it will help American workers, employers, and the overall economy face the impact of Artificial Intelligence (AI) and related automation technologies on the future of work. It is estimated that by 2030 about 14% of the global workforce may need to change occupational categories as the world of work is disrupted by technological advances. Many current workers and those entering the workforce lack skills that in-demand jobs and jobs of the future require. Addressing this challenge requires a holistic understanding of occupational categories and characteristics, their interrelationships and changes over time, worker characteristics, and how to connect workers to future jobs and help them transition from one type of work to another and plan their career pathway. Our project involves convergent research in AI, data science, and optimization, industrial and organizational psychology - specifically, person-job fit, person-environment fit, employee selection and bias, and human resources - specifically, workforce training and career planning. It will leverage partnerships with a diversity of stakeholders: government organizations, academia, industry, civilian, and military - to inform our research and define objectives and deliverables that are suitable for transitioning to practice.This Convergence Accelerator Phase I project incorporates three elements to transform decision support for linking workers with future jobs and for job transition, training, and career planning. First, we propose a rich, holistic, fine-grained view of worker characteristics and job, occupation, and cross-occupation characteristics suitable for processing by data-driven AI systems. Second, we capture interrelationships between different types of jobs as tasks and other characteristics can overlap or be closely related. Third, we propose a data-driven detailed model created in the form of an occupation knowledge graph to provide AI-based decision support in career transitions and planning, by capturing the temporal changes in jobs and their characteristics. We utilize various natural language processing, deep learning, information extraction, and optimization methods to develop these elements. The anticipated results will yield a knowledge graph with a rich semantic understanding of the relationship between concepts associated with different occupations, a model to assist organizations in identifying workers for particular roles, positions, and work contexts, and a career planning toolkit. These all tie into the occupational challenges that the current and future workforce faces with advances in AI and related technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,以应对国家重要性的挑战,并在不久的将来展示可交付成果的潜力。 这个融合加速器第一阶段项目的更广泛的影响/潜在利益涉及它将帮助美国工人,雇主和整体经济面对人工智能(AI)和相关自动化技术对未来工作的影响的方式。据估计,到2030年,全球约14%的劳动力可能需要改变职业类别,因为工作世界被技术进步所扰乱。许多目前的工人和那些进入劳动力市场的人缺乏需求工作和未来工作所需的技能。应对这一挑战需要全面了解职业类别和特点、它们的相互关系和随时间的变化、工人的特点,以及如何将工人与未来的工作联系起来,帮助他们从一种工作过渡到另一种工作,规划他们的职业道路。我们的项目涉及人工智能、数据科学和优化、工业和组织心理学(特别是人与工作的契合度、人与环境的契合度、员工选择和偏见)以及人力资源(特别是劳动力培训和职业规划)的融合研究。它将利用与政府组织、学术界、工业界、民间和军方等各种利益相关者的伙伴关系,为我们的研究提供信息,并定义适合过渡到实践的目标和交付成果。这个融合加速器第一阶段项目包括三个要素,以转变决策支持,将工人与未来工作联系起来,并为工作过渡、培训和职业规划提供支持。首先,我们提出了一个丰富的,整体的,细粒度的工人特征和工作,职业和跨职业特征的视图,适合由数据驱动的人工智能系统处理。其次,我们捕捉不同类型的工作之间的相互关系,因为任务和其他特征可以重叠或密切相关。第三,我们提出了一个数据驱动的详细模型,以职业知识图的形式创建,通过捕捉工作及其特征的时间变化,为职业过渡和规划提供基于AI的决策支持。我们利用各种自然语言处理,深度学习,信息提取和优化方法来开发这些元素。预期的结果将产生一个知识图谱,对与不同职业相关的概念之间的关系有丰富的语义理解,一个帮助组织确定特定角色,职位和工作环境的工人的模型,以及一个职业规划工具包。这些都与当前和未来劳动力面临的人工智能和相关技术进步的职业挑战有关。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nihar Mahapatra其他文献

Neutrophil Lymphocyte Ratio can Preempt Development of Sepsis After Adult Living Donor Liver Transplantation.
中性粒细胞比率可以预防成人活体供肝移植后脓毒症的发生。

Nihar Mahapatra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nihar Mahapatra', 18)}}的其他基金

NSF Convergence Accelerator Track H: An Inclusive, Human-Centered, and Convergent Framework for Transforming Voice AI Accessibility for People Who Stutter
NSF 融合加速器轨道 H:一个包容性、以人为本的融合框架,用于改变口吃者的语音 AI 可访问性
  • 批准号:
    2345086
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Convergent, Human-Centered Design for Making Voice-Activated AI Accessible and Fair to People Who Stutter
NSF 融合加速器轨道 H:融合、以人为本的设计,使语音激活人工智能对口吃者来说更容易使用且公平
  • 批准号:
    2235916
  • 财政年份:
    2022
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
AF: Small: Accurate, Biochemically-Relevant, and Robust Scoring Functions for Protein-Ligand Binding Affinity Prediction
AF:小:用于蛋白质-配体结合亲和力预测的准确、生化相关且稳健的评分功能
  • 批准号:
    1117900
  • 财政年份:
    2011
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
  • 批准号:
    0627835
  • 财政年份:
    2005
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Continuing Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
  • 批准号:
    0102830
  • 财政年份:
    2001
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Continuing Grant

相似国自然基金

大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
  • 批准号:
    2344877
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
  • 批准号:
    2345069
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
  • 批准号:
    2345176
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
  • 批准号:
    2345052
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
  • 批准号:
    2345039
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
  • 批准号:
    2345139
  • 财政年份:
    2023
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
  • 批准号:
    1937033
  • 财政年份:
    2019
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
  • 批准号:
    1937019
  • 财政年份:
    2019
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
  • 批准号:
    1937061
  • 财政年份:
    2019
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
  • 批准号:
    1937068
  • 财政年份:
    2019
  • 资助金额:
    $ 40.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了