Exploring Chemical Compound Space with Machine Learning

通过机器学习探索化合物空间

基本信息

项目摘要

The accurate prediction of molecular properties in the chemical compound space (CCS) is a crucial ingredient toward rational compound design in chemical and pharmaceutical industries. Therefore, one of the major challenges is to be enable quantitative calculations of molecular properties in CCS at moderate computational cost (milliseconds per molecule or faster). However, currently only high level quantum-chemical calculations, which can take up to several days per molecule, yield the desired 'chemical accuracy' (1~kcal/mol) required for predictive \textit{in silico} rational molecular design.Machine learning (ML) methods have been successfully used to map the problem of solving complex physical differential equations to statistical models. In this project, we will assess the capability of efficient ML methods when applied to the prediction of different molecular properties obtained with quantum chemistry calculations. The main focus will be on predicting molecular energies, however the same ideas can be employed at a later stage to predict excited state properties, such as polarizability, ionization potential or electron affinity.Our final aim is to enable predictions of molecular energies close to 'chemical accuracy' at a small fraction of cost of electronic structure calculations. Achieving this goal will allow us to rationally explore and analyze the structure and dimensionality of CCS.The expected results of this project are: (a) a physical analysis (exploration) of CCS using optimal ML models, with an outlook to identify important classes of molecules and understand the dimensionality of CCS. (b) A rigorous assessment of the feasibility (capabilities as well as limitations) of using ML techniques for the prediction of molecular properties, and finally (c) a dataset of molecular properties and excited state properties for a wide variety of molecules computed with different levels of theory.
准确预测化合物空间的分子性质是化学和制药工业中合理设计化合物的关键因素。因此,主要的挑战之一是如何以适中的计算成本(每个分子毫秒级或更快)实现CCS中分子特性的定量计算。然而,目前只有高水平的量子化学计算才能产生预期的“化学精度”(1千卡/摩尔),这是预测\textit{硅}理性分子设计所需的,每个分子可能需要几天的时间。机器学习(ML)方法已被成功地用于将求解复杂物理微分方程的问题映射到统计模型。在这个项目中,我们将评估有效的ML方法在应用于预测量子化学计算获得的不同分子性质时的能力。主要的焦点将是预测分子能量,然而,同样的想法可以在稍后的阶段用于预测激发态性质,如极化率,电离势或电子亲和。我们的最终目标是使分子能量的预测接近“化学精度”,而成本只是电子结构计算的一小部分。实现这一目标将使我们能够合理地探索和分析CCS的结构和维度。该项目的预期结果是:(a)使用最优ML模型对CCS进行物理分析(探索),以期识别重要的分子类别并了解CCS的维度。(b)对使用ML技术预测分子性质的可行性(能力和局限性)进行严格评估,最后(c)用不同理论水平计算的各种分子的分子性质和激发态性质的数据集。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
sGDML: Constructing accurate and data efficient molecular force fields using machine learning
  • DOI:
    10.1016/j.cpc.2019.02.007
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Chmiela, Stefan;Sauceda, Huziel E.;Tkatchenko, Alexandre
  • 通讯作者:
    Tkatchenko, Alexandre
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
  • DOI:
    10.1103/physrevb.89.205118
  • 发表时间:
    2014-05-21
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Schuett, K. T.;Glawe, H.;Gross, E. K. U.
  • 通讯作者:
    Gross, E. K. U.
Capturing intensive and extensive DFT/TDDFT molecular properties with machine learning
  • DOI:
    10.1140/epjb/e2018-90148-y
  • 发表时间:
    2018-08-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Pronobis, Wiktor;Schuett, Kristof T.;Mueller, Klaus-Robert
  • 通讯作者:
    Mueller, Klaus-Robert
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Klaus-Robert Müller其他文献

Professor Dr. Klaus-Robert Müller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Klaus-Robert Müller', 18)}}的其他基金

Multimodal and Multivariate Machine Learning Methods for Nonlinearly Coupled Oscillatory Systems
非线性耦合振荡系统的多模态和多元机器学习方法
  • 批准号:
    236447838
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Learning Concepts in Deep Networks
深度网络中的学习概念
  • 批准号:
    227351812
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical concepts for co-adaptive human machine interaction with application to BCI
自适应人机交互的理论概念及其在 BCI 中的应用
  • 批准号:
    200318152
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Weiterentwicklung maschineller Lernmethoden für Sequenzen mit Anwendung zur rechnergestützter Generkennung
序列机器学习方法的进一步发展及其在计算机辅助基因识别中的应用
  • 批准号:
    110857523
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Maschinelle Lernmethoden für die Chemische Informatik II
化学信息学的机器学习方法 II
  • 批准号:
    51114943
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theorie und Praxis von kernbasierten Lernmethoden
基于核心的学习方法的理论与实践
  • 批准号:
    5434007
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Elucidation of the mechanism of regulation of HGF expression in small chemical compound-induced HGF-producing cells
阐明小化合物诱导的 HGF 产生细胞中 HGF 表达的调节机制
  • 批准号:
    23K11807
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of formation processes of interstellar nucleobase precursors by laboratory experiments for the organic compound synthesis and quantum chemical calculations
通过有机化合物合成和量子化学计算的实验室实验研究星际核碱基前体的形成过程
  • 批准号:
    22KJ2625
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Chemical Compound Storage
化合物储存
  • 批准号:
    10710084
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a water-soluble modifying group that is metabolically activated regardless of the chemical structure of the parent compound
开发一种水溶性修饰基团,无论母体化合物的化学结构如何,该修饰基团都会被代谢激活
  • 批准号:
    19K16421
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effect of target power density on the chemical composition of thin films synthesized from composite/compound targets (T05*)
靶材功率密度对复合材料/复合靶材合成薄膜化学成分的影响 (T05*)
  • 批准号:
    407652830
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios (Transfer Project)
Regulation of Abeta secretion and protective mechanisms by Golgi stress responsive factor Syx5 and chemical compound in neuronal cells
高尔基体应激反应因子Syx5和神经细胞化合物对Abeta分泌和保护机制的调节
  • 批准号:
    18K06468
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Systematic understanding and application of chemical etching of compound semiconductors
化合物半导体化学刻蚀的系统理解与应用
  • 批准号:
    17K06866
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Learning on Structure-Activity Relationship from Heterogenous Chemical Compound Databases
从异质化合物数据库中学习构效关系
  • 批准号:
    17K00320
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of chemical compound-based direct reprogramming method for human retinal pigment epithelial cells
基于化合物的人视网膜色素上皮细胞直接重编程方法的开发
  • 批准号:
    17K01365
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Importance sampling of chemical compound space: Thermodynamic properties from high-throughput coarse-grained simulations
化合物空间的重要性采样:高通量粗粒度模拟的热力学性质
  • 批准号:
    285228850
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了