Multimodal and Multivariate Machine Learning Methods for Nonlinearly Coupled Oscillatory Systems
非线性耦合振荡系统的多模态和多元机器学习方法
基本信息
- 批准号:236447838
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning appropriate representations, or extracting useful features from data, is one of the fundamentalproblems of Machine Learning. Recently, multimodal neuroimaging has become an important tool forbasic research and clinical diagnosis. By utilizing methods from machine learning, it has been possibleto further our understanding of multimodal neural data and extract novel insights from the multitudeof high dimensional data, such as obtained from EEG/EMG recordings and simultaneous measuresof hemodynamics (e.g. NIRS of fMRI). However, analysis methods that are currently being used arenot able to optimally extract the underlying common factors (latent sources) if the coupling betweenthe modality specific dynamics is nonlinear. This is due to the fact that either the methods are nottruly multimodal or they do not fully take into account established generative models and the nonlinearnature of the types of coupling between modalities. Furthermore, todays methods suffer from a tradeoffbetween accuracy (e.g. errors in terms of prediction or quality of regression) and interpretability (i.e. theability to interpret the resulting representations with respect to the hidden causes/sources).The proposed project is organized in two parts. In the first (analytical) part we will develop novelmultivariate methods for the simultaneous extraction of nonlinearly interacting sources from multimodalimaging data. In particular we will focus on domain specific generative models in order to find low dimensional representations of the multimodal data that maximally explain the coupled dynamics of theunderlying system. At the same time, the extracted sources will adhere to the domain specific generativemodel assumptions and will therefore be interpretable therein. Specifically we will develop novelmultimodal and multivariate spatial filtering methods that uncover common sources in multimodal neuroimaging data whose dynamics are nonlinearly and nonstantaneously coupled. By seeking common source space representations, we anticipate that our methods will not only provide excellent performance in terms of establishing a connection between measurement modalities, but that they will overcome the aforementioned tradeoff between accuracy and interpretability.In the second part of this project we will apply the newly developed methods to existing open questionsfrom the fields of (computational) neuroscience and neurotechnology. We expect to be able tocontribute substantially to questions concerning (i) the mechanisms underlying the generation of eventrelated potentials (ERP), (ii) novel unsupervised training methods for Brain-Computer Interfaces (BCI), and (iii) better understanding of common dynamics in EEG spectral power and NIRS measurements which in turn will lead to superior performance of BCI applications.
学习适当的表示,或从数据中提取有用的特征,是机器学习的基本问题之一。近年来,多模态神经影像学已成为基础研究和临床诊断的重要工具。通过利用机器学习的方法,我们可以进一步理解多模态神经数据,并从大量高维数据中提取新的见解,例如从脑电图/肌电图记录和血流动力学的同时测量中获得(例如功能磁共振成像的近红外光谱)。然而,如果模态特定动力学之间的耦合是非线性的,目前使用的分析方法不能最优地提取潜在的共同因素(潜在源)。这是由于这些方法不是真正的多模态,或者它们没有充分考虑到已建立的生成模型和模态之间耦合类型的非线性性质。此外,今天的方法在准确性(例如预测或回归质量方面的错误)和可解释性(即根据隐藏原因/来源解释结果表示的能力)之间进行权衡。拟建项目分为两部分。在第一部分(分析)中,我们将开发新的多元方法,用于从多模态成像数据中同时提取非线性相互作用源。特别是,我们将专注于特定领域的生成模型,以便找到多模态数据的低维表示,最大限度地解释底层系统的耦合动态。同时,提取的源将遵循特定于领域的生成模型假设,因此在其中是可解释的。具体来说,我们将开发新的多模态和多元空间滤波方法,以揭示多模态神经成像数据的共同来源,这些数据的动态是非线性和非瞬时耦合的。通过寻找共同的源空间表示,我们预计我们的方法不仅将在建立测量模式之间的联系方面提供出色的性能,而且还将克服上述准确性和可解释性之间的权衡。在这个项目的第二部分,我们将把新开发的方法应用于(计算)神经科学和神经技术领域现有的开放问题。我们希望能够对以下问题做出重大贡献:(i)事件相关电位(ERP)产生的机制,(ii)脑机接口(BCI)的新型无监督训练方法,以及(iii)更好地理解脑电图频谱功率和近红外光谱测量的共同动态,这反过来将导致BCI应用的卓越性能。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finding brain oscillations with power dependencies in neuroimaging data
- DOI:10.1016/j.neuroimage.2014.03.075
- 发表时间:2014-08-01
- 期刊:
- 影响因子:5.7
- 作者:Daehne, Sven;Nikulin, Vadim V.;Haufe, Stefan
- 通讯作者:Haufe, Stefan
Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
- DOI:10.1109/jproc.2015.2425807
- 发表时间:2015-09-01
- 期刊:
- 影响因子:20.6
- 作者:Daehne, Sven;Biessmann, Felix;Muller, Klaus-Robert
- 通讯作者:Muller, Klaus-Robert
Identifying Granger causal relationships between neural power dynamics and variables of interest
- DOI:10.1016/j.neuroimage.2014.12.059
- 发表时间:2015-05-01
- 期刊:
- 影响因子:5.7
- 作者:Winkler, Irene;Haufe, Stefan;Daehne, Sven
- 通讯作者:Daehne, Sven
Unsupervised classification of operator workload from brain signals
根据大脑信号对操作员工作量进行无监督分类
- DOI:10.1088/1741-2560/13/3/036008
- 发表时间:2016
- 期刊:
- 影响因子:4
- 作者:M. Schultze-Kraft;S. Dähne;M. Gugler;G. Curio;B. Blankertz
- 通讯作者:B. Blankertz
SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters
- DOI:10.1016/j.neuroimage.2013.07.079
- 发表时间:2014-02-01
- 期刊:
- 影响因子:5.7
- 作者:Daehne, Sven;Meinecke, Frank C.;Nikulin, Vadim V.
- 通讯作者:Nikulin, Vadim V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Klaus-Robert Müller其他文献
Professor Dr. Klaus-Robert Müller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Klaus-Robert Müller', 18)}}的其他基金
Exploring Chemical Compound Space with Machine Learning
通过机器学习探索化合物空间
- 批准号:
253375148 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Theoretical concepts for co-adaptive human machine interaction with application to BCI
自适应人机交互的理论概念及其在 BCI 中的应用
- 批准号:
200318152 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Priority Programmes
Weiterentwicklung maschineller Lernmethoden für Sequenzen mit Anwendung zur rechnergestützter Generkennung
序列机器学习方法的进一步发展及其在计算机辅助基因识别中的应用
- 批准号:
110857523 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Maschinelle Lernmethoden für die Chemische Informatik II
化学信息学的机器学习方法 II
- 批准号:
51114943 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Theorie und Praxis von kernbasierten Lernmethoden
基于核心的学习方法的理论与实践
- 批准号:
5434007 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multivariate Statistics and Machine Learning for Quality Control of Dried Ocimum Products
用于干罗勒产品质量控制的多元统计和机器学习
- 批准号:
10676412 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
- 批准号:
2153379 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: OAC: Cyberinfrastructure for Machine Learning on Multivariate Time Series Data and Functional Networks
CRII:OAC:多元时间序列数据和功能网络机器学习的网络基础设施
- 批准号:
2305781 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Inferences and machine learning methods for multivariate time-to-event data with incomplete information
不完整信息的多元事件时间数据的推理和机器学习方法
- 批准号:
21K11783 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Evaluation of machine learning algorithms for understanding and predicting adaptation to multivariate environments with a Model Validation Program (MVP)
职业:通过模型验证程序 (MVP) 评估机器学习算法,以理解和预测对多变量环境的适应
- 批准号:
2043905 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamic multivariate optimisation model based mobile-app using autoML machine learning algorithm made for shift workers in retail
基于动态多变量优化模型的移动应用程序,使用 autoML 机器学习算法,专为零售业轮班工人设计
- 批准号:
76632 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
Multivariate Machine Learning to Characterize Opioid-induced Alterations in the Brain in Chronic Pain
多变量机器学习表征阿片类药物引起的慢性疼痛大脑变化
- 批准号:
10643854 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Multivariate Machine Learning to Characterize Opioid-induced Alterations in the Brain in Chronic Pain
多变量机器学习表征阿片类药物引起的慢性疼痛大脑变化
- 批准号:
9891124 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Multivariate Machine Learning to Characterize Opioid-induced Alterations in the Brain in Chronic Pain
多变量机器学习表征阿片类药物引起的慢性疼痛大脑变化
- 批准号:
10430065 - 财政年份:2020
- 资助金额:
-- - 项目类别: