CAREER: Electronic Transport in Sulfide-Based Lithium Solid Electrolytes
职业:硫化物基锂固体电解质中的电子传输
基本信息
- 批准号:2238672
- 负责人:
- 金额:$ 58.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYLithium-ion batteries have succeeded in powering portable electronics, but they face the challenges of safety and energy density for applications in electrification transportation and grid storage. Solid-state batteries that utilize nonflammable solid electrolytes (SEs) are being considered as a promising approach for safe and high-energy storage systems. As an electrochemical energy storage system, a lithium-ion battery works in a way that only ions shuttle between cathode and anode through an electrolyte inside the battery while electrons flow through the external circuit during charge and discharge. The electrolyte should have a high ionic conductivity but low electronic conductivity to ensure that the electrons cannot travel directly inside the battery to cause self-discharge. Significant efforts have been devoted to improving the ionic conductivity of battery SEs. However, the electronic conductivity, which has important implications in the life-time, energy density, and cycling stability of solid-state batteries has rarely been studied. This CAREER proposal aims to study the mechanisms of electronic transport in sulfide-based Li solid electrolytes. The ultimate goal is to gain critical scientific insights for designing electronically insulating SEs for high-performance solid-state batteries. The multi-disciplinary research provides multiple opportunities for training graduate and undergraduate researchers. The project involves curriculum development and pedagogical innovations for teaching charge transport in solids, and includes multiple outreach activities to K-12 students, particularly those from historically and traditionally underrepresented groups. The proposed research is expected to be impactful with respect to the maintenance and advancement of the US battery technology leadership and achievement of the Nation’s strategic goal of full decarbonization by 2050. The education efforts are also expected to be helpful for STEM education and workforce development in the field of energy storage. TECHNICAL SUMMARYThis hypothesis-driven proposal aims to understand the mechanisms of electronic transport in sulfide-based lithium solid electrolyte (SEs), including binary Li2S-P2S5, Li10GeP2S12, and Li6PS5Cl. The research goals of the project are to determine the intrinsic electronic conductivity of Li SEs, reveal their voltage dependence, and identify the dominant causes and charge carriers for the electronic conduction in Li SEs. These goals are achieved through a combination of experimental and theoretical approaches, including synthesis of ceramic SEs with controlled composition, crystallinity, and microstructure, advanced and in-situ electrochemical measurements based on the Hebb-Wagner approach, and theory of defect equilibria and transport for minority carriers in mixed ionic and electronic conductors. The proposed research is expected to provide critical insights to understand defect chemistry and transport of electronic carriers in sulfide-based Li SEs and establish design principles of electronically insulating SEs for high-energy-density, long-calendar-life solid-state batteries. This proposal aims also to implement an innovative approach for the introduction of “solid state ionics (SSI)” – i.e., transport and reactions of ionic and electronic defects in solids – to students in the field of electrochemical energy storage. SSI play a critical role in the discovery and domination of lithium-ion batteries, but the instruction of SSI-related topics has been primarily focused on oxide-based materials in the context of fuel cells for energy conversion applications. Another educational goal for the proposal is to develop a learning module with the aid of virtual reality technology for teaching three-dimensional, tortuous, and anisotropic charge transport in solids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结电池已经成功地为便携式电子设备供电,但是它们面临着安全性和能量密度的挑战,用于应用电气传输和电网存储。利用不可燃烧的固体电解质(SES)的固态电池被视为安全和高能存储系统的承诺方法。作为电化学能源存储系统,锂离子电池的工作方式只能在电池内部的电解质之间通过电解质在阴极和阳极之间穿梭,而电子在充电和放电过程中流过外部电路。电解质应具有高离子电导率,但电子电导率较低,以确保电子无法直接在电池内传播以引起自我释放。已经致力于提高电池SES的离子电导率。但是,很少研究电子电导率,这对固态电池的寿命,能量密度和循环稳定性具有重要意义。该职业建议旨在研究基于硫化物的LI固体电解质中电子传输的机制。最终目标是获得对高性能固态电池进行电子绝缘SES设计的关键科学见解。多学科研究为培训研究生和本科研究人员提供了多种机会。该项目涉及课程开发和教学创新,用于教学固体中的教学收费运输,并为K-12学生,尤其是来自历史和传统上代表性不足的团体的学生进行多次外展活动。预计拟议的研究将在美国电池技术领导力的维护和进步方面具有影响力,并在2050年实现全国的战略目标。到2050年,努力也有助于在能源存储领域的STEM教育和劳动力发展。技术摘要这一假设驱动的建议旨在了解基于硫化物的锂固体电解质(SES)中电子传输的机制,包括二进制LI2S-P2S5,LI10GEP2S12和LI6PS5CL。该项目的研究目标是确定Li SES的固有电子电导率,揭示其电压依赖性,并确定Li SES电子传导的主要原因和电荷载体。这些目标是通过实验和理论方法的结合来实现的,包括基于HEBB-WAGNER方法的陶瓷SES的合成,具有控制的组成,结晶度和微观结构,高级和原地电化学测量值,以及在混合电离型和电子电动机中的少数族裔载体的缺陷和运输理论。拟议的研究预计将提供关键的见解,以了解基于硫化物的Li SES中电子载体的缺陷化学和运输,并为高能密度,长期寿命固态电池建立电子绝缘SES的设计原理。该建议还旨在实施一种创新的方法,以引入“固态离子学(SSI)”,即固体中离子和电子缺陷的运输和反应 - 向电化学储能领域的学生带入。 SSI在锂离子电池的发现和统治中起着至关重要的作用,但是与SSI相关主题的指导主要集中在用于能源转化应用的燃料电池的背景下。该提案的另一个教育目标是借助虚拟现实技术开发学习模块,以在固体中教授三维,曲折和各向异性的冲锋运输。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic Conductivity of Lithium Solid Electrolytes
- DOI:10.1002/aenm.202204098
- 发表时间:2023-03
- 期刊:
- 影响因子:27.8
- 作者:Bowen Shao;Yonglin Huang;Fudong Han
- 通讯作者:Bowen Shao;Yonglin Huang;Fudong Han
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fudong Han其他文献
Grain growth kinetics of the gamma phase metallic uranium
- DOI:
10.1016/j.jnucmat.2022.154185 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Dong Zhao;Michael T. Benson;Kun Yang;Yonglin Huang;Fidelma G. Di Lemma;Bowen Gong;Fudong Han;Jie Lian - 通讯作者:
Jie Lian
Hydride-Based Interlayer for Solid-State Anode-Free Battery
用于固态无阳极电池的氢化物中间层
- DOI:
10.1021/acsenergylett.4c00704 - 发表时间:
2024 - 期刊:
- 影响因子:22
- 作者:
Yonglin Huang;Yuxuan Zhang;Ruixin Wu;Bowen Shao;Ruihao Deng;Ratnottam Das;Fudong Han - 通讯作者:
Fudong Han
Fudong Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fudong Han', 18)}}的其他基金
CAS: Probing Nucleation and Growth Dynamics of Lithium Dendrites in Solid Electrolytes
CAS:探测固体电解质中锂枝晶的成核和生长动力学
- 批准号:
2223217 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
相似国自然基金
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
石墨烯-二维半导体异质结Dirac电子的调控研究
- 批准号:12304106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
调控分子HOMO与LUMO轨道电子分离和增强双激发态贡献协同实现单-三线态能级次序反转的高效率高稳定性蓝光发射材料
- 批准号:62375218
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强化电子迁移的三维生物膜电极构建及对呋喃类有机废水的降解机制
- 批准号:52360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
- 批准号:
10911713 - 财政年份:2023
- 资助金额:
$ 58.77万 - 项目类别:
CAREER: Electronic transport and interfacial effects on electrochemical hydrogen evolution reaction for transition metal dichalcogenides
职业:过渡金属二硫属化物电化学析氢反应的电子传输和界面效应
- 批准号:
2240944 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Towards a quantum-mechanical understanding of proton-coupled electron transfer and transition metal reactivity in biological processes
对生物过程中质子耦合电子转移和过渡金属反应性的量子力学理解
- 批准号:
10386836 - 财政年份:2021
- 资助金额:
$ 58.77万 - 项目类别:
CAREER: Electronic transport and interfacial effects on electrochemical hydrogen evolution reaction for transition metal dichalcogenides
职业:过渡金属二硫属化物电化学析氢反应的电子传输和界面效应
- 批准号:
1749742 - 财政年份:2018
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Electronic Structure of Heme Enzyme Intermediates from Resonant Inelastic X-ray Scattering and L-Edge X-ray Absorption Spectroscopy
共振非弹性 X 射线散射和 L 边 X 射线吸收光谱研究血红素酶中间体的电子结构
- 批准号:
10241897 - 财政年份:2017
- 资助金额:
$ 58.77万 - 项目类别: