CAREER: Electronic Transport in Sulfide-Based Lithium Solid Electrolytes
职业:硫化物基锂固体电解质中的电子传输
基本信息
- 批准号:2238672
- 负责人:
- 金额:$ 58.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYLithium-ion batteries have succeeded in powering portable electronics, but they face the challenges of safety and energy density for applications in electrification transportation and grid storage. Solid-state batteries that utilize nonflammable solid electrolytes (SEs) are being considered as a promising approach for safe and high-energy storage systems. As an electrochemical energy storage system, a lithium-ion battery works in a way that only ions shuttle between cathode and anode through an electrolyte inside the battery while electrons flow through the external circuit during charge and discharge. The electrolyte should have a high ionic conductivity but low electronic conductivity to ensure that the electrons cannot travel directly inside the battery to cause self-discharge. Significant efforts have been devoted to improving the ionic conductivity of battery SEs. However, the electronic conductivity, which has important implications in the life-time, energy density, and cycling stability of solid-state batteries has rarely been studied. This CAREER proposal aims to study the mechanisms of electronic transport in sulfide-based Li solid electrolytes. The ultimate goal is to gain critical scientific insights for designing electronically insulating SEs for high-performance solid-state batteries. The multi-disciplinary research provides multiple opportunities for training graduate and undergraduate researchers. The project involves curriculum development and pedagogical innovations for teaching charge transport in solids, and includes multiple outreach activities to K-12 students, particularly those from historically and traditionally underrepresented groups. The proposed research is expected to be impactful with respect to the maintenance and advancement of the US battery technology leadership and achievement of the Nation’s strategic goal of full decarbonization by 2050. The education efforts are also expected to be helpful for STEM education and workforce development in the field of energy storage. TECHNICAL SUMMARYThis hypothesis-driven proposal aims to understand the mechanisms of electronic transport in sulfide-based lithium solid electrolyte (SEs), including binary Li2S-P2S5, Li10GeP2S12, and Li6PS5Cl. The research goals of the project are to determine the intrinsic electronic conductivity of Li SEs, reveal their voltage dependence, and identify the dominant causes and charge carriers for the electronic conduction in Li SEs. These goals are achieved through a combination of experimental and theoretical approaches, including synthesis of ceramic SEs with controlled composition, crystallinity, and microstructure, advanced and in-situ electrochemical measurements based on the Hebb-Wagner approach, and theory of defect equilibria and transport for minority carriers in mixed ionic and electronic conductors. The proposed research is expected to provide critical insights to understand defect chemistry and transport of electronic carriers in sulfide-based Li SEs and establish design principles of electronically insulating SEs for high-energy-density, long-calendar-life solid-state batteries. This proposal aims also to implement an innovative approach for the introduction of “solid state ionics (SSI)” – i.e., transport and reactions of ionic and electronic defects in solids – to students in the field of electrochemical energy storage. SSI play a critical role in the discovery and domination of lithium-ion batteries, but the instruction of SSI-related topics has been primarily focused on oxide-based materials in the context of fuel cells for energy conversion applications. Another educational goal for the proposal is to develop a learning module with the aid of virtual reality technology for teaching three-dimensional, tortuous, and anisotropic charge transport in solids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结锂离子电池已成功为便携式电子产品提供动力,但在电气化运输和电网存储应用中面临安全性和能量密度的挑战。利用不可燃固体电解质(SE)的固态电池被认为是安全和高能量存储系统的一种有前途的方法。作为一种电化学能量存储系统,锂离子电池的工作方式是,在充电和放电过程中,只有离子通过电池内部的电解质在阴极和阳极之间穿梭,而电子通过外部电路流动。电解质应具有高离子电导率但低电子电导率,以确保电子不能直接在电池内部行进而引起自放电。已经致力于改善电池SE的离子电导率。然而,对固态电池的寿命、能量密度和循环稳定性具有重要影响的电子电导率却很少被研究。本CAREER提案旨在研究基于硫化物的锂固体电解质中的电子传输机制。最终目标是获得关键的科学见解,为高性能固态电池设计电子绝缘SE。多学科研究为培养研究生和本科生研究人员提供了多种机会。该项目涉及固体电荷传输教学的课程开发和教学创新,并包括针对K-12学生的多种外联活动,特别是那些来自历史上和传统上代表性不足的群体的学生。预计拟议的研究将对美国电池技术领导地位的保持和进步以及到2050年实现国家完全脱碳的战略目标产生影响。预计教育工作也将有助于储能领域的STEM教育和劳动力发展。技术概述该假设驱动的提案旨在了解硫化物基锂固体电解质(SE)中的电子传输机制,包括二元Li 2S-P2 S5,Li 10 GeP 2S 12和Li 6PS 5Cl。该项目的研究目标是确定Li SE的本征电子电导率,揭示其电压依赖性,并确定Li SE中电子传导的主导原因和电荷载流子。这些目标是通过实验和理论方法相结合来实现的,包括合成具有受控组成、结晶度和微观结构的陶瓷SE,基于Hebb-Wagner方法的先进和原位电化学测量,以及混合离子和电子导体中少数载流子的缺陷平衡和传输理论。预计拟议的研究将提供关键的见解,以了解硫化物基Li SE中电子载流子的缺陷化学和传输,并建立高能量密度,长日历寿命固态电池的电子绝缘SE的设计原则。该提案还旨在实施一种创新方法,以引入“固态离子学(SSI)”,即,固体中离子和电子缺陷的传输和反应-给电化学储能领域的学生。SSI在锂离子电池的发现和统治中发挥着关键作用,但SSI相关主题的教学主要集中在用于能量转换应用的燃料电池背景下的氧化物基材料。该提案的另一个教育目标是借助虚拟现实技术开发一个学习模块,用于教授固体中三维、曲折和各向异性的电荷传输。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electronic Conductivity of Lithium Solid Electrolytes
- DOI:10.1002/aenm.202204098
- 发表时间:2023-03
- 期刊:
- 影响因子:27.8
- 作者:Bowen Shao;Yonglin Huang;Fudong Han
- 通讯作者:Bowen Shao;Yonglin Huang;Fudong Han
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fudong Han其他文献
Grain growth kinetics of the gamma phase metallic uranium
- DOI:
10.1016/j.jnucmat.2022.154185 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Dong Zhao;Michael T. Benson;Kun Yang;Yonglin Huang;Fidelma G. Di Lemma;Bowen Gong;Fudong Han;Jie Lian - 通讯作者:
Jie Lian
Nanostructuring versus microstructuring in battery electrodes
纳米结构与电池电极中的微观结构
- DOI:
10.1038/s41578-022-00454-9 - 发表时间:
2022-06-29 - 期刊:
- 影响因子:86.200
- 作者:
Rishabh Jain;Aniruddha Singh Lakhnot;Kevin Bhimani;Shyam Sharma;Varad Mahajani;Reena A. Panchal;Mithil Kamble;Fudong Han;Chunsheng Wang;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Hydride-Based Interlayer for Solid-State Anode-Free Battery
用于固态无阳极电池的氢化物中间层
- DOI:
10.1021/acsenergylett.4c00704 - 发表时间:
2024 - 期刊:
- 影响因子:22
- 作者:
Yonglin Huang;Yuxuan Zhang;Ruixin Wu;Bowen Shao;Ruihao Deng;Ratnottam Das;Fudong Han - 通讯作者:
Fudong Han
Lithium/sulfide all-solid-state batteries using sulfide electrolytes
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Jinghua Wu;Sufu Liu;Fudong Han;Xiayin Yao;Chunsheng Wang - 通讯作者:
Chunsheng Wang
Fudong Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fudong Han', 18)}}的其他基金
CAS: Probing Nucleation and Growth Dynamics of Lithium Dendrites in Solid Electrolytes
CAS:探测固体电解质中锂枝晶的成核和生长动力学
- 批准号:
2223217 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
相似海外基金
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
- 批准号:
2349830 - 财政年份:2024
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321302 - 财政年份:2023
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Investigation of Two-Phase Aerosol Formation, Transport, and Deposition in Aerosol Jet Printing for Submicron Manufacturing of Printed Electronic Devices
RII Track-4:@NASA:用于印刷电子设备亚微米制造的气溶胶喷射印刷中两相气溶胶形成、传输和沉积的研究
- 批准号:
2327460 - 财政年份:2023
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2401851 - 财政年份:2023
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
The Impact of Phonon Scattering on Quantum Transport in Nanoscale Electronic Devices
声子散射对纳米级电子器件中量子传输的影响
- 批准号:
548097-2020 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2154448 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
- 批准号:
2154449 - 财政年份:2022
- 资助金额:
$ 58.77万 - 项目类别:
Standard Grant














{{item.name}}会员




