CAREER: Bioelectronics-embedded hybrid brain tissues

职业:生物电子学嵌入式混合脑组织

基本信息

  • 批准号:
    2239557
  • 负责人:
  • 金额:
    $ 65.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

This CAREER award aims to explore lab-grown brain tissues that are monitored and controlled through embedded bioelectronic devices. In vitro brain tissue models play an important role in neuroscience because they enable studies that cannot be performed in living humans, for example how the young brain develops or is affected by injury or disease. These models, however, are limited. Brains are composed of networks of neurons that communicate through electrical impulses, yet current technologies cannot interact with these signals. This project will develop a brain-machine interface that will provide bioelectronic outputs and inputs from multiple locations throughout the brain tissue. The outputs will provide insights into how the brain develops or responds to stimuli, while the inputs will provide insight into how sensory signals are processed. In addition to generating knowledge about neuroscience and materials science, the tools generated in this project could provide insights into brain dysfunction, including neurological disorders which affect one in six people globally. This project will also use neuroscience as a tool to recruit and retain underrepresented minorities into Science, Technology Engineering and Math fields through high school outreach, funded summer internships, and coursework designed to engage a diverse audience.This CAREER award aims to develop an engineered hybrid brain tissue model that merges functional neuronal networks with bioelectronic devices in 3D configurations. Central to the work will be a BioElectronic Mesh (BioEM) that will support multiplexed stimulation and/or recording elements and their interconnections; and will seamlessly integrate with the surrounding tissue. The central hypothesis is that information stored and transmitted in engineered neural networks can be decoded or reprogrammed via this two-way bioelectronic interface. The project will incorporate investigations at the materials, device, and tissue scales. The first goal is to develop a BioEM suitable for neuronal integration. Chemical and nanomaterials-based approaches will be explored to achieve bioactive interfaces that promote electronic coupling. The second goal is to investigate how outputs can be used to derive information about the structure of the networks and how they respond to chemical perturbations. Network analysis and machine learning techniques will be developed to analyze the volumes of data produced and derive predictive frameworks. The third goal is to incorporate stimulation devices to achieve sensory-like inputs and study how they affect neuronal function including synaptic plasticity or “memory” formation. The final goal is to incorporate nanoelectronic probes that enter the cytosol and measure intracellular signals. In addition to enriching our understanding of neuroscience, the tools and knowledge generated will bolster the utility of in vitro models for brain dysfunction, including neurological disorders which affect one in six people globally. The research could also be transformative for other fields, including hybrid biological/solid-state computation, bioelectronic medicine, developmental biology and regenerative medicine. In addition, the program will incorporate an education component aimed at increasing participation and retention among underrepresented minorities in Science, Technology, Engineering and Math fields. It will establish a high school outreach program, funded summer internship opportunities, and coursework that incorporates culturally sustained pedagogies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个职业奖旨在探索通过嵌入式生物电子设备监测和控制的实验室生长的脑组织。体外脑组织模型在神经科学中发挥着重要作用,因为它们可以进行无法在活体人类中进行的研究,例如年轻的大脑如何发育或受到损伤或疾病的影响。然而,这些模型是有限的。大脑由通过电脉冲进行通信的神经元网络组成,但目前的技术无法与这些信号相互作用。该项目将开发一个脑机接口,该接口将从整个脑组织的多个位置提供生物电子输出和输入。输出将提供大脑如何发展或对刺激做出反应的见解,而输入将提供如何处理感觉信号的见解。除了生成有关神经科学和材料科学的知识外,该项目中生成的工具还可以提供对大脑功能障碍的见解,包括影响全球六分之一人口的神经系统疾病。该项目还将利用神经科学作为一种工具,通过高中外展、资助暑期实习和旨在吸引不同受众的课程,招募和留住在科学、技术工程和数学领域代表性不足的少数民族。该CAREER奖项旨在开发一种工程混合脑组织模型,将功能神经网络与生物电子设备以3D配置相结合。这项工作的核心将是一个生物电子网格(BioEM),它将支持多路复用的刺激和/或记录元件及其互连;并将与周围组织无缝集成。核心假设是,在工程神经网络中存储和传输的信息可以通过这种双向生物电子接口进行解码或重新编程。该项目将纳入材料、器械和组织规模的研究。第一个目标是开发适合神经元整合的BioEM。将探索化学和纳米材料为基础的方法,以实现生物活性界面,促进电子耦合。第二个目标是研究如何使用输出来获得有关网络结构的信息以及它们如何对化学扰动作出反应。将开发网络分析和机器学习技术,以分析产生的数据量并得出预测框架。第三个目标是结合刺激设备来实现类似感觉的输入,并研究它们如何影响神经元功能,包括突触可塑性或“记忆”形成。最终的目标是将纳米电子探针,进入细胞溶质和测量细胞内信号。除了丰富我们对神经科学的理解外,所产生的工具和知识还将加强脑功能障碍体外模型的实用性,包括影响全球六分之一人口的神经系统疾病。这项研究也可能对其他领域产生变革性影响,包括混合生物/固态计算、生物电子医学、发育生物学和再生医学。此外,该方案还将纳入一个教育部分,旨在增加在科学、技术、工程和数学领域代表性不足的少数群体的参与和保留。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Timko其他文献

Brian Timko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Multisensory Soft Bioelectronics for Comprehensive Monitoring of Gastrointestinal Physiological Interplay
职业:用于全面监测胃肠道生理相互作用的多感官软生物电子学
  • 批准号:
    2339495
  • 财政年份:
    2024
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Quinoid Polymers for Organic Electrochemical Transistors and Bioelectronics
用于有机电化学晶体管和生物电子学的醌型聚合物
  • 批准号:
    DE240101231
  • 财政年份:
    2024
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Discovery Early Career Researcher Award
Advancing bioelectronics with silicon carbide on microfluidics
利用碳化硅微流体技术推进生物电子学
  • 批准号:
    DE240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Discovery Early Career Researcher Award
Organic Bioelectronics: Solving Key Barriers to Precision Neuromodulation
有机生物电子学:解决精准神经调节的关键障碍
  • 批准号:
    DP230102705
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Discovery Projects
Center for Advanced Muscle BioElectronics (CAMBER)
高级肌肉生物电子中心 (CAMBER)
  • 批准号:
    10573637
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
CAREER: Implantable multimodal bioelectronics for high-performance gastrointestinal monitoring and modulation
职业:用于高性能胃肠道监测和调节的植入式多模式生物电子学
  • 批准号:
    2238273
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
Bioelectronics-embedded injectable hydrogel for neural regeneration
用于神经再生的生物电子学嵌入式可注射水凝胶
  • 批准号:
    10647492
  • 财政年份:
    2023
  • 资助金额:
    $ 65.64万
  • 项目类别:
CAREER: Acousto-Bioelectronics
职业:声学生物电子学
  • 批准号:
    2245090
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Continuing Grant
All-Printed Nanomembrane Sensors and Bioelectronics for Wireless and Continuous Monitoring of Vascular Health
全印刷纳米膜传感器和生物电子学,用于无线和连续监测血管健康
  • 批准号:
    2152638
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Standard Grant
QV Bioelectronics USA cooperation feasibility study
美国QV生物电子合作可行性研究
  • 批准号:
    10020166
  • 财政年份:
    2022
  • 资助金额:
    $ 65.64万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了