Self-Assembling Volumetric Optical Metamaterials

自组装体积光学超材料

基本信息

  • 批准号:
    2211148
  • 负责人:
  • 金额:
    $ 79.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY:A central challenge of nanotechnology is to convert abundant, naturally occurring materials into high performance materials with desired properties. Inverse design is one way to create materials with extraordinary optical properties such as invisibility. In this approach, a computer algorithm combines just two materials such as sand and air into tiny three-dimensional structures with the desired optical properties. However, the extreme complexity of resulting designs makes them extremely difficult and costly to make. This project aims to develop a new approach for facile synthesis of materials with special optical properties. The investigators will develop a new nanoscale synthesis approach that exploits the remarkable programmability of DNA to enable construction of 3D structures that previously existed only in theory. Nanoscale particles will be decorated with DNA strands with precise sequences and locations, inducing their self-assembly into “inversely designed” structures. The research team will characterize these new materials and explore how their use in high performance devices. The proposed research will yield a general approach to design and synthesize materials with unprecedented scalability and precision, while eliminating the need for expensive and unsustainable nanofabrication facilities. The PI is committed to empowering the creativity and adoption of the new approach by diverse students of all ages. Towards that end, the proposed research concepts will be disseminated via inclusive mentoring and outreach activities for students spanning high school, college, and graduate levels.TECHNICAL SUMMARY:The overarching goal of this project is to develop an approach to self-assemble nanoscale dielectric and plasmonic “material voxels” into volumetric metamaterials with arbitrary photonic functions in the visible spectrum. This research will take powerful concepts developed in the fields of electromagnetic inverse design and DNA nanotechnology and combines them to construct materials with previously unattainable optical functions. The self-assembly of nanoscale inorganic voxels will be achieved by embedding DNA recognition capabilities into them. The main scientific challenges to tackle are: (1) How to synthesize DNA-functionalized material voxels. Several ways to transfer the unique addressability of DNA origami from a 2D DNA-only breadboard to a 3D material voxel surface will be explored. (2) How to self-assemble voxels into microstructures with arbitrary photonic functions such as color sorting. Several strategies to self-assemble the DNA-functionalized voxels into desired nanophotonic architectures will be developed. (3) How to design and characterize optical functions for multivoxel architectures. The investigators will construct architectures with several specific functions in visible and IR windows and characterize them. (4) How to precisely place optical elements onto existing devices. Integration of the obtained architectures with existing optoelectronic device platforms will be explored. The ultimate goal is to turn self-assembly into a versatile, robust, and accessible tool for practical construction of photonic materials and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米技术的一个核心挑战是将丰富的天然材料转化为具有所需特性的高性能材料。逆向设计是创造具有非凡光学特性(如不可见性)的材料的一种方法。在这种方法中,计算机算法将沙子和空气等两种材料结合成具有所需光学特性的微小三维结构。然而,最终设计的极端复杂性使得它们非常难以制造且成本高昂。本项目旨在开发一种简便合成具有特殊光学性能材料的新方法。研究人员将开发一种新的纳米级合成方法,利用DNA非凡的可编程性来构建以前仅存在于理论中的3D结构。纳米级的粒子将用具有精确序列和位置的DNA链装饰,诱导它们自组装成“逆向设计”的结构。研究小组将对这些新材料进行表征,并探索它们如何在高性能设备中使用。拟议的研究将产生一种通用方法,以前所未有的可扩展性和精度设计和合成材料,同时消除对昂贵和不可持续的纳米制造设施的需求。PI致力于赋予所有年龄段的不同学生创造力和采用新方法。为此,拟议的研究概念将通过包容性的指导和推广活动,为学生跨越高中,大学和研究生level.Technical摘要:这个项目的首要目标是开发一种方法来自组装纳米电介质和等离子体“材料体素”到体积的超材料与任意光子功能在可见光谱。这项研究将采用电磁逆向设计和DNA纳米技术领域开发的强大概念,并将它们结合起来,构建具有以前无法实现的光学功能的材料。纳米级无机体素的自组装将通过将DNA识别能力嵌入其中来实现。主要的科学挑战是:(1)如何合成DNA功能化材料体素。将探索将DNA折纸的独特可寻址性从2D仅DNA试验板转移到3D材料体素表面的几种方法。(2)如何将体素自组装成具有任意光子功能(如颜色分类)的微结构。将开发几种将DNA功能化体素自组装成所需纳米光子架构的策略。(3)如何设计和表征多体元结构的光学功能。研究人员将在可见光和红外窗口中构建具有几种特定功能的架构,并对其进行表征。(4)如何将光学元件精确地放置到现有设备上。将探讨所获得的架构与现有的光电设备平台的集成。最终目标是将自组装技术转化为一种多功能、强大且易于使用的工具,用于实际构建光子材料及其他材料。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigory Tikhomirov其他文献

Dual-enzyme activated theranostic nanoparticles for image-guided glioblastoma therapy
  • DOI:
    10.1038/s41598-025-97775-w
  • 发表时间:
    2025-04-19
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Zahra Shokri Varniab;Edwin Chang;Jie Wang;Ramesh Duwa;Vidyani Suryadevara;Wei Wu;Manoj Kumar;Tie Liang;Zubeda Khatoon;Goreti Ribeiro Morais;Robert Falconer;Yifeng Shi;Grigory Tikhomirov;Kerem Nernekli;Laura Jean Pisani;Heike Elisabeth Daldrup-Link
  • 通讯作者:
    Heike Elisabeth Daldrup-Link

Grigory Tikhomirov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigory Tikhomirov', 18)}}的其他基金

CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
  • 批准号:
    2240000
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant

相似海外基金

Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
  • 批准号:
    DP240101571
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Discovery Projects
NSF Convergence Accelerator Track M: Slime Mold Inspired Self-Assembling Conveyor System for Flood Response
NSF 融合加速器轨道 M:受粘菌启发的用于洪水响应的自组装输送系统
  • 批准号:
    2344289
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323968
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
  • 批准号:
    10605021
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
  • 批准号:
    10738545
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323969
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
RNA delivery by self-assembling phagocytic-competent protein crystals
通过自组装具有吞噬能力的蛋白质晶体进行 RNA 递送
  • 批准号:
    10067767
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Collaborative R&D
CAREER: Representing, Discovering, and Assembling Motifs for Video Understanding
职业:表示、发现和组装视频理解的主题
  • 批准号:
    2238769
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321341
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了