CAREER: Discovering and Engineering Protein-Based Sensors for Nitrate in Biology
职业:在生物学中发现和设计基于蛋白质的硝酸盐传感器
基本信息
- 批准号:2240095
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemistry of Life Processes Program in the Chemistry Division, Sheel C. Dodani from The University of Texas at Dallas will study the biochemistry of the nitrate oxyanion. It is widely recognized that nitrate is required for essential functions in bacteria and plants such as respiration, growth, and signaling. However, much remains unknown about the beneficial and detrimental effects of nitrate in humans. To fill this knowledge gap, the Dodani Lab will study and engineer protein sensors in an effort to develop nitrate-selective sensors. If successful, such proteins have the potential to detect nitrate in living cells, and, in the longer term, shed light on the biochemical roles of nitrate. These efforts will be coupled to an educational plan that seeks to illustrate the biochemical significance of anions such as nitrate through interactions with food-based proteins by developing a general chemistry laboratory course for undergraduate students entitled Hofmeister in the Kitchen.Nitrate is an essential inorganic ion for life. In bacteria and plants, nitrate is a well-studied nutrient and signaling ion; in humans, nitrate has been overshadowed by reactive nitrogen oxides. To dissect the contributions of nitrate in human biology, a fundamental understanding of its cellular uptake, regulation, and targets is needed. Optical imaging approaches with nitrate-selective fluorescent biosensors can accelerate the path to gain these insights in living cells. However, such technologies remain rare due to the inherent difficulty of aqueous anion recognition. To overcome this fundamental challenge, the Dodani research team will investigate proteins as biological supramolecular hosts for nitrate. Specifically, nitrate binding proteins are being identified through bioinformatics, and will be characterized with biophysical methods, and used to engineer fluorescent protein-based sensors for cellular applications. This interdisciplinary approach is expected to begin to unravel the sequence level molecular determinants that confer and tune biomolecular nitrate recognition. The goal is to develop and/or identify selective protein sensors for nitrate, a major challenge at the chemistry/biology interface. The larger molecular theme of this science is to illuminate the roles of nitrate in biology. The protein-based tools being developed in this project are expected to help address this basic question and as such have broad scientific impact at the chemistry-biology interface.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学部生命过程化学项目的支持下,Sheel C.来自德克萨斯大学达拉斯分校的Dodani将研究硝酸盐氧阴离子的生物化学。人们普遍认为,硝酸盐是细菌和植物的基本功能所必需的,如呼吸,生长和信号传导。然而,关于硝酸盐对人类的有益和有害影响仍有很多未知之处。为了填补这一知识空白,Dodani实验室将研究和设计蛋白质传感器,以开发硝酸盐选择性传感器。 如果成功的话,这些蛋白质有可能检测到活细胞中的硝酸盐,并且从长远来看,揭示了硝酸盐的生化作用。 这些努力将与一项教育计划相结合,该计划旨在通过为本科生开发一门名为“厨房中的霍夫迈斯特”的普通化学实验课程,说明硝酸盐等阴离子通过与食物蛋白质相互作用的生物化学意义。硝酸盐是生命所必需的无机离子。在细菌和植物中,硝酸盐是一种经过充分研究的营养和信号离子;在人类中,硝酸盐已被活性氮氧化物所掩盖。为了剖析硝酸盐在人类生物学中的贡献,需要对其细胞摄取,调节和目标有基本的了解。使用硝酸盐选择性荧光生物传感器的光学成像方法可以加速在活细胞中获得这些见解的路径。然而,由于水溶液阴离子识别的固有困难,这种技术仍然很少见。为了克服这一根本挑战,Dodani研究小组将研究蛋白质作为硝酸盐的生物超分子宿主。具体来说,硝酸盐结合蛋白正在通过生物信息学进行鉴定,并将通过生物物理方法进行表征,并用于设计基于荧光蛋白的传感器以用于细胞应用。这种跨学科的方法有望开始解开序列水平的分子决定因素,赋予和调整生物分子硝酸盐识别。 我们的目标是开发和/或识别硝酸盐的选择性蛋白质传感器,这是化学/生物学界面的一个主要挑战。 这门科学更大的分子主题是阐明硝酸盐在生物学中的作用。 该项目中开发的基于蛋白质的工具有望帮助解决这一基本问题,因此在化学-生物学界面上具有广泛的科学影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheel Dodani其他文献
Sheel Dodani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Studentship
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Research Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Discovering eukaryotic symbionts across diverse insect communities
合作研究:发现不同昆虫群落中的真核共生体
- 批准号:
2405207 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Discovering How Root Sense Hard Soils
探索根系如何感知硬土
- 批准号:
EP/Y036697/1 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Research Grant
Discovering missing links in neuropeptide evolution and function
发现神经肽进化和功能中缺失的环节
- 批准号:
BB/X001806/1 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Research Grant
Collaborative Research: Discovering eukaryotic symbionts across diverse insect communities
合作研究:发现不同昆虫群落中的真核共生体
- 批准号:
2405206 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
- 批准号:
2309538 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant