NSF-BSF: Learning the concept of Dynamic Equilibrium across disciplines with SystEms Augmented Mechanistic Representations
NSF-BSF:通过 SystEms 增强机械表示学习跨学科动态平衡的概念
基本信息
- 批准号:2240216
- 负责人:
- 金额:$ 87.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Learning the concept of Dynamic Equilibrium across disciplines with SystEms Augmented Mechanistic Representations A fascinating aspect of systems in science is dynamic equilibrium (DE). DE describes situations, in which changes continually happen, but they balance each other out. Examples include our body maintaining a constant temperature while the surroundings can be hot or cold, or an ecosystem maintaining cyclical population levels even as predators and prey die and reproduce. Understanding how such dynamical systems remain stable is fundamental to understanding order and pattern in the world. Thus, it is crucial that students of science come to understand this concept, helping them develop science proficiency. Despite the importance of the concept of DE, it is hard for many people to understand. The contrast between stability and change is confusing so people tend to think of the system as static. The PI’s work has shown that by introducing visual models and simulations, students get a deeper understanding and are more engaged when learning science. Yet, there still remains a problem with connecting the phenomenon to the way the elements interact. The project addresses this problem by conducting a series of studies and software design iterations. The project develops a range of possible computer-based representations, which can support a more coherent understanding of DE. These candidate representations are tested, and a winner chosen. The winner becomes a new tool added to the models and simulations. These augmented simulations are then be used to create science units. The team works with science teachers to build learning units on DE phenomena. A cross-cultural comparison will explore how the winning representation is differently learned in US and Israeli schools. The proposal has two main objectives: (1) construct a theoretically and cognitively viable framework for learning DE that balances mechanism and causality with robustness and generality, and (2) develop an augmented representation that overlays systemic features upon mechanistic processes, what the investigators call SEAM (SystEms Augmented Mechanistic) representations. Creating the DE framework involves four studies: (1) analysis of science education standards related to DE; (2) analysis of the research literature on students’ ideas regarding DE; (3) investigating scientists’ explicit and implicit communication regarding DE; (4) research into students’ intuitions regarding DE. Developing the SEAM representation involves 3 studies: (5) design of three candidates with experienced science teachers; (6) learning research with the three representations, culminating in a cross-cultural comparison of students’ learning in the US and in Israel; (7) deliberative selection of the final SEAM representation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用Systems增强的机械表示学习跨学科的动态平衡概念科学中系统的一个迷人方面是动态平衡(DE)。DE描述的是不断发生变化的情况,但它们相互平衡。例子包括我们的身体保持恒定的温度,而周围环境可以是热的或冷的,或生态系统保持周期性的人口水平,即使捕食者和猎物死亡和繁殖。理解这样的动力系统如何保持稳定是理解世界秩序和模式的基础。 因此,至关重要的是,科学的学生来理解这个概念,帮助他们发展科学能力。尽管DE的概念很重要,但许多人很难理解。稳定和变化之间的对比令人困惑,所以人们倾向于认为系统是静态的。PI的工作表明,通过引入可视化模型和模拟,学生在学习科学时获得了更深入的理解,并更加投入。然而,将这一现象与元素相互作用的方式联系起来仍然存在问题。该项目通过进行一系列研究和软件设计迭代来解决这个问题。该项目开发了一系列可能的基于计算机的表示,这可以支持DE的更连贯的理解。对这些候选表示进行测试,并选出赢家。赢家将成为添加到模型和模拟中的新工具。这些增强的模拟然后被用来创建科学单位。该团队与科学教师合作,建立DE现象的学习单元。一个跨文化的比较将探讨如何获胜的代表是不同的学习在美国和以色列的学校。该提案有两个主要目标:(1)构建一个理论上和认知上可行的学习DE的框架,平衡机制和因果关系与鲁棒性和通用性,(2)开发一种增强表示,将系统特征覆盖在机械过程上,研究人员称之为SEAM(SystemsAugmentedMechanistic)表示。本研究主要包括以下四个方面的研究:(1)科学教育标准的分析;(2)学生科学教育观念的研究文献分析;(3)科学家关于科学教育的显性和隐性交流的调查;(4)学生关于科学教育的直觉的研究。 发展SEAM表征涉及三个研究:(5)设计三个候选人与经验丰富的科学教师;(6)学习研究与三个表征,最终在美国和以色列的学生学习的跨文化比较;(七)该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uri Wilensky其他文献
"Oh My God! It's Recreating Our Room!" Understanding Children's Experiences with A Room-Scale Augmented Reality Authoring Toolkit
“天哪!它正在重建我们的房间!”
- DOI:
10.1145/3613904.3642043 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
John Chen;Lexie Zhao;Yinmiao Li;Zhennian Xie;Uri Wilensky;Mike Horn - 通讯作者:
Mike Horn
Please Scroll down for Article Journal of the Learning Sciences Promoting Transfer by Grounding Complex Systems Principles
请向下滚动查看文章《学习科学杂志通过扎根复杂系统原理促进迁移》
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
R. L. Goldstone;Uri Wilensky - 通讯作者:
Uri Wilensky
Agent-Based Modeling for Psychology Research
用于心理学研究的基于主体的建模
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Dor Abrahamson;Uri Wilensky - 通讯作者:
Uri Wilensky
Meta-Theoretic Competence for Computational Agent-Based Modeling
基于计算代理的建模的元理论能力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
H. Swanson;Uri Wilensky - 通讯作者:
Uri Wilensky
Why are some students “not into” computational thinking activities embedded within high school science units? Key takeaways from a microethnographic discourse analysis study
为什么有些学生“不喜欢”高中科学单元中的计算思维活动?微观民族志话语分析研究的主要结论是什么?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.3
- 作者:
Umit Aslan;Mike S. Horn;Uri Wilensky - 通讯作者:
Uri Wilensky
Uri Wilensky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uri Wilensky', 18)}}的其他基金
POSE: Phase II: Cultivating Modeling Literacy and Practice through a NetLogo Open Source Ecosystem
POSE:第二阶段:通过 NetLogo 开源生态系统培养建模素养和实践
- 批准号:
2303582 - 财政年份:2023
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
Adding Computational Thinking Components to the High-School Science Curriculum to Broaden Participation in Computational Science
在高中科学课程中添加计算思维成分,扩大计算科学的参与范围
- 批准号:
1842374 - 财政年份:2018
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
Building Theories of Scientific Phenomena: Comparing and Integrating Aggregate Pattern-based and Agent-based Computational Approaches
建立科学现象理论:比较和集成基于聚合模式和基于代理的计算方法
- 批准号:
1842375 - 财政年份:2018
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
EAGER: MAKER: A Cultural Framework for Equity in Maker Practices
EAGER:创客:创客实践中的公平文化框架
- 批准号:
1723750 - 财政年份:2017
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
Collaborative Research: Group-Based Cloud Computing for STEM Education Project
合作研究:基于群体的 STEM 教育项目云计算
- 批准号:
1614745 - 财政年份:2016
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
A Whole-School Model for Integrating Computational Thinking in High School Science and Mathematics
高中科学与数学计算思维整合的全校模式
- 批准号:
1640201 - 财政年份:2016
- 资助金额:
$ 87.56万 - 项目类别:
Continuing Grant
EAGER: A Low-Cost Integrated Agent-based Modeling and Physical Computing Platform
EAGER:低成本集成的基于代理的建模和物理计算平台
- 批准号:
1438813 - 财政年份:2014
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
Learning Evolution through Model-Based Inquiry: Supporting Agent-Based Modeling in STEM Classrooms
通过基于模型的探究实现学习进化:支持 STEM 课堂中基于主体的建模
- 批准号:
1109834 - 财政年份:2012
- 资助金额:
$ 87.56万 - 项目类别:
Continuing Grant
Workshop: Transitioning Research-Developed Learning Technologies into Broad Use Phases, Challenges, and Needed Infrastructure
研讨会:将研究开发的学习技术转变为广泛使用阶段、挑战和所需的基础设施
- 批准号:
1110901 - 财政年份:2010
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 87.56万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 87.56万 - 项目类别:
Continuing Grant
NSF-BSF: Reactivation and sleep in visual and motor skill acquisition: learning beyond training
NSF-BSF:视觉和运动技能习得中的重新激活和睡眠:训练之外的学习
- 批准号:
2241417 - 财政年份:2023
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
- 批准号:
2141139 - 财政年份:2022
- 资助金额:
$ 87.56万 - 项目类别:
Continuing Grant
MFB: NSF-BSF: Data-Adaptive and Metamorphosis Machine Learning Architectures for Generative Protein Design of Metal Biosensors
MFB:NSF-BSF:用于金属生物传感器生成蛋白质设计的数据自适应和变形机器学习架构
- 批准号:
2226804 - 财政年份:2022
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF/BSF: New Approaches to Understanding and Enhancing Human Learning and Memory Consolidation
NSF/BSF:理解和增强人类学习和记忆巩固的新方法
- 批准号:
2048681 - 财政年份:2021
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF-BSF: Interaction of Cholinergic and Dopaminergic Modulation Underlying Associative Learning
NSF-BSF:联想学习下胆碱能和多巴胺能调节的相互作用
- 批准号:
2034783 - 财政年份:2021
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF-BSF: CNS Core: Small: Machine Learning for Real-Time Network Rate Control
NSF-BSF:CNS 核心:小型:用于实时网络速率控制的机器学习
- 批准号:
2008971 - 财政年份:2020
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF-BSF: RI: Small: Learning to plan safely
NSF-BSF:RI:小型:学习安全计划
- 批准号:
1908287 - 财政年份:2019
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant
NSF-BSF: CIF: Small: Self-adapting Code Generation in Rate-distortion Theory, Machine Learning, and Channel Coding
NSF-BSF:CIF:小型:率失真理论、机器学习和信道编码中的自适应代码生成
- 批准号:
1909423 - 财政年份:2019
- 资助金额:
$ 87.56万 - 项目类别:
Standard Grant