Correlation of Atomic Level Growth, Characterization and Electronic Properties of Epitaxial Ferromagnetic Alloys on Compound Semiconductors

化合物半导体上外延铁磁合金的原子级生长、表征和电子性能的相关性

基本信息

  • 批准号:
    0606245
  • 负责人:
  • 金额:
    $ 35.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

Technical: Theoretical studies have suggested that the spin polarization of magnetic materials is very sensitive to compositional changes and defects at surfaces and interfaces. This sensitivity to composition and defects is believed to be responsible for limiting the performance of spin transport based devices and the aim of this proposal is to experimentally determine these correlations. Single crystal ferromagnetic alloys will be grown by molecular beam epitaxy (MBE) on atomically clean, well characterized, MBE-grown semiconductor surfaces. In-situ deposition and annealing will be used to modify the surface composition and structure. In-situ scanning tunneling microscopy (STM), reflection high energy electron diffraction, low energy electron diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and magneto optic Kerr effect (MOKE) measurements will be combined with ex-situ Rutherford backscattering, high resolution x-ray diffraction, transmission electron microscopy (TEM), vibration sample (VSM) and superconducting quantum interference device (SQUID) magnetometry to obtain a detailed understanding of the atomic level structural, chemical and magnetic properties. The spin polarization will be determined by measurements of in-situ fabricated superconductor-ferromagnetic metal tunnel junctions, in-situ fabricated ferromagnetic metal tunnel junctions, and in-situ point contact Andreev reflections (PCAR). In-situ PCAR is advantageous for determining the effect of surface composition and structure, as it does not require deposition of a tunnel barrier material on top of the ferromagnetic layer, which is likely to change the surface properties. It also has the advantage that the spin polarization of the same sample can be measured sequentially after surface modification. By comparing the three spin polarization measurements, the influence the surfaces, interfaces and tunnel barrier on the spin transport in tunnel junctions will be determined experimentally. Non-Technical: The project addresses basic research issues in a topical area of materials science having high technological relevance. The research will contribute basic materials science knowledge at a fundamental level to new understanding and capabilities for potential next generation electronic/spintronic devices. An important feature of the program is the integration of research and education through the training of students in a fundamentally and technologically significant area. The interdisciplinary nature of the project including magnetism, materials science, molecular beam epitaxy, surface science, low-temperature physics, superconductivity, ultra high vacuum technology, and electron microscopy provides a unique training ground for future materials scientists at the undergraduate and graduate levels. Students will have opportunities and be trained and educated in all aspects of these interdisciplinary fields. The ability to gain a fundamental understanding of how atomic structure at surfaces, interfaces and in the bulk of the materials affects magnetic and spin properties of thin films will be a critical component of their education. The PI has a strong commitment to assisting diversity and to training students and postdoctoral associates to collaborate with other students and scientists. Opportunities provided by collaborative projects make this training unique and important to future materials scientists. Currently, the PI's group consists of 4 graduate students and two postdoctoral associates from different ethnic backgrounds, including US, Germany, Taiwan, India, and Korea. Half of the students are women. Broadening the range of areas in which students and postdoctoral associates have knowledge enhances their future career choices. Students will gain invaluable exposure to state of the art atomic level characterization techniques and learn what information may or may not be gained through various techniques. The PI has been successful in involving a balance of male (50%) and female (50%) undergraduate students from four-year colleges to participate in summer research and training programs and will continue these efforts. Emphasis is made on developing interactive and collaborative skills through collaborations and research interactions with groups of complementary expertise.
技术:理论研究表明,磁性材料的自旋极化对表面和界面的成分变化和缺陷非常敏感。这种对成分和缺陷的敏感性被认为是限制基于自旋输运的器件性能的原因,这一提议的目的是从实验上确定这些相关性。单晶铁磁合金将通过分子束外延(MBE)在原子清洁、表征良好的MBE生长的半导体表面上生长。将使用原位沉积和热处理来改变表面的成分和结构。原位扫描隧道显微镜(STM)、反射高能电子衍射、低能电子衍射、X射线光电子能谱、俄歇电子能谱和磁光克尔效应(MOKE)测量将与非原位卢瑟福背散射、高分辨率X射线衍射、透射电子显微镜(TEM)、振动样品(VSM)和超导量子干涉器件(SQUID)磁学相结合,以获得对原子能级结构、化学和磁性的详细了解。自旋极化将通过测量原位制造的超导体-铁磁金属隧道结、原位制造的铁磁金属隧道结和原位点接触安德烈夫反射(PCAR)来确定。原位PCAR对于确定表面成分和结构的影响是有利的,因为它不需要在铁磁层顶部沉积隧道势垒材料,这可能会改变表面性质。它还具有表面修饰后可连续测量同一样品的自旋极化的优点。通过比较三种自旋极化测量结果,可以从实验上确定表面、界面和隧道势垒对隧道结中自旋输运的影响。非技术性:该项目解决具有高度技术相关性的材料科学专题领域的基础研究问题。这项研究将在基础水平上为潜在的下一代电子/自旋电子器件的新的理解和能力贡献基本的材料科学知识。该计划的一个重要特点是通过在一个具有根本意义和技术意义的领域对学生进行培训,将研究和教育结合起来。该项目的跨学科性质包括磁学、材料科学、分子束外延、表面科学、低温物理、超导、超高真空技术和电子显微镜,为未来本科生和研究生水平的材料科学家提供了一个独特的培训场所。学生将有机会在这些跨学科领域的各个方面接受培训和教育。能够从根本上了解表面、界面和材料中的原子结构如何影响薄膜的磁性和自旋性质,这将是他们教育的关键组成部分。PI坚定地致力于帮助多样性,并培训学生和博士后伙伴与其他学生和科学家合作。合作项目提供的机会使这种培训对未来的材料科学家来说是独特的和重要的。目前,派的小组由来自美国、德国、台湾、印度和韩国等不同种族背景的4名研究生和2名博士后助理组成。一半的学生是女性。扩大学生和博士后伙伴拥有知识的领域范围,可以增强他们未来的职业选择。学生将获得宝贵的接触最先进的原子水平的表征技术,并学习哪些信息可以或不可以通过各种技术获得。该计划已成功地吸引了来自四年制大学的男女本科生(各占50%)参加暑期研究和培训计划,并将继续这些努力。重点是通过与相互补充的专门知识群体进行协作和研究互动,发展互动和协作技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Palmstrom其他文献

Magnetic field dependence of quantized conductance plateau in InAs quantum wire
InAs 量子线中量子化电导平台的磁场依赖性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Matsuo;Hiroshi Kamata;Shoji Baba;Russell Deacon;Javad Shabani;Christopher Palmstrom;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha
Atomic structures of platinum nanoparticles on a TiO2(110) surface
TiO2(110) 表面铂纳米粒子的原子结构
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;Joon Sue Lee;Chien-Yuan Chang;佐藤洋介;上田健人;Christopher Palmstrom;樽茶清悟;U. Yujiro I. Ryo K. Kazuaki S. Naoya I. Yuich
  • 通讯作者:
    U. Yujiro I. Ryo K. Kazuaki S. Naoya I. Yuich
Andreev Reflection at a Junction of Spin-resolved Quantum Hall State and Superconductor
自旋分辨量子霍尔态与超导体交界处的安德烈夫反射
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadashige Matsuo;Kento Ueda;Shoji Baba;Hiroshi Kamata;Javad Shabani;Christopher Palmstrom;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha
Al-InAs量子井戸から作製した超伝導接合の輸送特性.2
Al-InAs 量子阱超导结的传输特性2
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;館野瑞樹;馬場翔二;上田健人;佐藤洋介;鎌田大;Joon Sue Lee;Borzoyeh Shojaei;Christopher Palmstrom;樽茶清悟
  • 通讯作者:
    樽茶清悟
InAs量子井戸から形成した量子細線の伝導特性と電界制御
InAs量子阱量子线的导电特性和电场控制
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;鎌田大;馬場翔二;R. S. Deacon;Javad Shabani;Christopher Palmstrom;樽茶清悟
  • 通讯作者:
    樽茶清悟

Christopher Palmstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Palmstrom', 18)}}的其他基金

Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240246
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Buried Single Crystal Semi-Metal/Semiconductor Nanocomposites for 3D Electronic Materials
用于 3D 电子材料的埋入式单晶半金属/半导体纳米复合材料
  • 批准号:
    1507875
  • 财政年份:
    2015
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Correlation of Atomic Level Growth, Characterization and Electronic Properties of Epitaxial Ferromagnetic Alloys on Compound Semiconductors
化合物半导体上外延铁磁合金的原子级生长、表征和电子性能的相关性
  • 批准号:
    0913561
  • 财政年份:
    2008
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Development of In-Situ Magnetic Characterization for Magnetic/Semiconductor Heterostructures Research, Student Training and Education
磁性/半导体异质结构研究、学生培训和教育的原位磁性表征开发
  • 批准号:
    0076493
  • 财政年份:
    2000
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
  • 批准号:
    2350199
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
CAREER: Developing a Computational Workflow to Quantify Atomic-level Allosteric Mechanisms
职业:开发计算工作流程来量化原子级变构机制
  • 批准号:
    2238706
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Atomic level structural control and characterisation of perovskite quantum dots
钙钛矿量子点的原子级结构控制与表征
  • 批准号:
    22KJ0994
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
  • 批准号:
    2313365
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
  • 批准号:
    EP/Y024958/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Fellowship
Atomic-Level Insight into Photoinduced Transformations in Perovskite Optoelectronics
钙钛矿光电子学中光致转变的原子级洞察
  • 批准号:
    EP/Y01376X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Research Grant
Atomic-level probing of the peptidoglycan biosynthetic machinery in bacterial cell wall biogenesis
细菌细胞壁生物发生中肽聚糖生物合成机制的原子水平探测
  • 批准号:
    10685947
  • 财政年份:
    2022
  • 资助金额:
    $ 35.92万
  • 项目类别:
CZT Semiconductors: Growth, atomic-level properties, and integration in X-ray detectors
CZT 半导体:生长、原子级特性以及 X 射线探测器中的集成
  • 批准号:
    577354-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了