Collaborative Research: Understanding Sulfur-Carbon-Solid Electrolyte Interface of Lithium/Sulfur Solid-State Batteries

合作研究:了解锂/硫固态电池的硫-碳-固体电解质界面

基本信息

项目摘要

In recent years, there has been a significant movement towards using electric vehicles (EVs) as a more sustainable form of transportation. Continuous innovation of rechargeable batteries that supply power to an electric motor is required to boost the adoption of EVs since the battery significantly affects the driving range, safety, and cost of EVs. A lithium/sulfur (Li/S) battery consisting of a lithium metal anode and sulfur cathode is a promising candidate for EV applications as it has the potential for a five-times longer driving distance at a given weight of the EV battery compared to conventional lithium-ion batteries. The major challenges towards the development of reliable and safe Li/S batteries are 1) the need to mitigate problematic issues associated with chemical compounds called lithium polysulfides, which are formed in the organic liquid electrolyte during battery operation, and 2) the flammable ionic conductor used as electrolyte. A Li/S solid-state battery is a promising system for overcoming these issues because it uses a solid-state electrolyte which is non-flammable and can prevent polysulfide formation better than liquid electrolytes. However Li/S solid-state batteries suffer from poor energy storage/delivery performance due to an insufficient understanding of the electrode-solid electrolyte interface. This project will conduct fundamental studies on the interfaces in Li/S solid-state batteries, advanced materials characterization methods, and implement rational electrode design to address these challenges. The results from this project will create new knowledge that can enable energy storage solutions to meet the U.S.’s mission toward decarbonizing the global automotive sector and shaping the sustainable energy future. Comprehensive education and workforce development plans are laid out through a seamless partnership between Arizona State University and the University of Michigan Ann Arbor. Training graduate and undergraduate students via this research project will significantly contribute to the mission of both universities mission to become a hotbed of energy technologies.The overarching goal of this project is to improve the understanding of the electrochemical processes taking place in Li/S composite cathodes employing garnet-type lithium lanthanum zirconium oxide (Li7La3Zr2O12, LLZO) as a solid electrolyte. The research will focus on: 1) Obtaining an improved understanding of the reaction mechanisms in Li/S composite cathodes using model systems, electroanalytical techniques, and in operando/ex-situ X-ray analyses, 2) Elucidation of fundamental thermodynamic and kinetic parameters influential in the electrochemical processes of sulfur, and 3) Investigation of design parameters such as particle size, morphology, surface properties, and mass loading of components in the sulfur/solid state electrolyte composite cathode. Enabled by the collaborative research team’s expertise in Li/S cell chemistry, solid-state battery technology, and synchrotron-based in-situ/operando characterization, this project will result in a comprehensive methodology for investigating and designing sustainable, next-generation energy storage systems. The results of the project will lead to the innovative design of S-LLZO composite cathodes, which is favorable for fast and sustainable electrochemical processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,电动汽车(EV)作为一种更可持续的交通方式已经取得了重大进展。为电动机供电的可充电电池的持续创新是推动电动汽车采用的必要条件,因为电池会显著影响电动汽车的行驶里程、安全性和成本。由锂金属阳极和硫阴极组成的锂/硫(Li/S)电池是用于EV应用的有希望的候选者,因为与常规锂离子电池相比,其在EV电池的给定重量下具有五倍长的行驶距离的潜力。开发可靠、安全的Li/S电池的主要挑战是:1)需要缓解与称为多硫化锂的化合物相关的问题,这些化合物在电池运行期间在有机液体电解质中形成,以及2)易燃离子导体用作电解质。Li/S固态电池是克服这些问题的有前途的系统,因为它使用不可燃的固态电解质,并且可以比液体电解质更好地防止多硫化物形成。然而,由于对电极-固体电解质界面的理解不足,Li/S固态电池遭受差的能量存储/递送性能。该项目将对Li/S固态电池中的界面进行基础研究,先进的材料表征方法,并实施合理的电极设计以应对这些挑战。该项目的结果将创造新的知识,使储能解决方案能够满足美国的需求。我们的使命是实现全球汽车行业的脱碳,塑造可持续能源的未来。全面的教育和劳动力发展计划是通过亚利桑那州立大学和密歇根大学安阿伯之间的无缝合作关系制定的。通过本研究项目培养研究生和本科生将大大有助于两所大学的使命,成为能源技术的温床。本项目的总体目标是提高对锂/硫复合阴极中发生的电化学过程的理解,该阴极采用石榴石型锂镧锆氧化物(Li 7 La 3 Zr 2 O 12,LLZO)作为固体电解质。研究将侧重于:1)使用模型系统、电分析技术和在操作/非原位X射线分析中获得对Li/S复合阴极中的反应机理的改进的理解,2)阐明在硫的电化学过程中有影响的基本热力学和动力学参数,和3)研究设计参数,例如颗粒尺寸、形态、表面性质,以及硫/固态电解质复合阴极中组分的质量负载。借助合作研究团队在Li/S电池化学、固态电池技术和基于同步加速器的原位/操作表征方面的专业知识,该项目将为研究和设计可持续的下一代储能系统提供全面的方法。该项目的成果将导致S-LLZO复合阴极的创新设计,这有利于快速和可持续的电化学过程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Penner-Hahn其他文献

Competing Ferromagnetism and Superconductivity on FeAs Layers in EuFe_2(As_<0.73>P_<o.27>)_2
EuFe_2(As_<0.73>P_<o.27>)_2 中 FeAs 层的铁磁性和超导性竞争
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Aamir Ahmed;M.Itou;Shenggo Xu;Zhu'an Xu;Guanghan Cao;Y.Sakurai;James Penner-Hahn;Aniruddha Deb
  • 通讯作者:
    Aniruddha Deb

James Penner-Hahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Penner-Hahn', 18)}}的其他基金

IDBR: Development of an x-ray flow cytometer for single cell metal analysis
IDBR:开发用于单细胞金属分析的 X 射线流式细胞仪
  • 批准号:
    0852802
  • 财政年份:
    2009
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
A Fermentation and Cell Collection Facility at the University of Michigan
密歇根大学的发酵和细胞收集设施
  • 批准号:
    9970145
  • 财政年份:
    1999
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant

相似国自然基金

多模态语义与视觉协同的情景式动漫人机创作研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
通专模型协同的多模态理解与生成关键技术研究
  • 批准号:
    Z25F020037
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
交叉口新型混合交通流交互机理解析及协同优化设计研究
  • 批准号:
    52372304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多源有机固废高蒸汽参数协同焚烧的氯腐蚀机理解析与调控研究
  • 批准号:
    52370134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于边云协同的机场旅客行为理解与预测关键技术研究
  • 批准号:
    U2133211
  • 批准年份:
    2021
  • 资助金额:
    208 万元
  • 项目类别:
    重点项目
多元特征协同的列车车体能耗机理解析及优化设计研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向弱标注视觉理解的语义一致性表示多源协同学习研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
面向人机智能装配的人体动作识别与理解方法的仿生研究
  • 批准号:
    52005338
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
复杂环境下陆空无人系统协同多模态认知和定位建图方法研究
  • 批准号:
    62003039
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于跨媒体语义协同理解的农业知识演化与生成研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 26.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了