Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies

用于人类情感研究的多主体神经影像数据的时空分析

基本信息

  • 批准号:
    2048991
  • 负责人:
  • 金额:
    $ 11.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This interdisciplinary research project will develop new statistical methods to analyze multi-subject, stimulus-evoked functional magnetic resonance imaging (fMRI) data collected from a psychology study of human emotion. The project will increase understanding of how human brain circuits associated with emotions function in a context that combines social support with externally generated emotional stress. Ultimately, the project will contribute knowledge of how the brain uses social support via the social regulation of emotion. This knowledge will facilitate future research in this area. The results of this research will assist clinical researchers interested in the neuropathology of many neurodevelopmental and affective disorders affecting children and adults. The project will provide the opportunity for undergraduate and graduate students (especially those from underrepresented groups) to participate in advanced statistical and multidisciplinary research involving human brain data. Project results, including scientific findings and developed software, will be made publicly available using public repositories.The statistical models and computational methods to be developed will address typical challenges in analyzing fMRI data, including massive data size, complex spatial and temporal properties, and a weak signal-to-noise ratio. The new low-rank multivariate general linear models for multi-subject, stimulus-evoked fMRI data feature the brain activity's common properties shared across different regions, subjects, and stimulus types, and they require fewer parameters than nonparametric methods to characterize variation in brain activity. As such, the new approaches to fMRI data analysis are characterized by simultaneously reduced model parameters, increased estimation efficiency, and sufficient model flexibility. This project will develop new nonconvex optimization algorithms to address the computational challenges in analyzing fMRI data. Applying the developed methods to a fMRI study of human emotion, the investigators will examine the difference in brain responses to negative emotional stimuli under different social contact conditions and identify the association between emotion-related brain functions and concomitant affective feelings under different social contact conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个跨学科的研究项目将开发新的统计方法来分析从人类情感心理学研究中收集的多学科刺激诱发功能磁共振成像(fMRI)数据。该项目将加深人们对人类大脑中与情绪相关的回路如何在社会支持与外部产生的情绪压力相结合的情况下发挥作用的理解。最终,该项目将有助于了解大脑如何通过情绪的社会调节来使用社会支持。这些知识将有助于未来在这一领域的研究。这项研究的结果将有助于临床研究人员对影响儿童和成人的许多神经发育和情感障碍的神经病理学感兴趣。该项目将为本科生和研究生(特别是那些来自代表性不足群体的学生)提供参与涉及人脑数据的高级统计和多学科研究的机会。项目成果,包括科学发现和开发的软件,将通过公共存储库向公众提供。开发的统计模型和计算方法将解决分析fMRI数据的典型挑战,包括大量数据大小,复杂的空间和时间属性以及弱信噪比。新的低秩多元一般线性模型用于多受试者、刺激诱发的fMRI数据,其特征是大脑活动在不同区域、受试者和刺激类型之间共有的共同特性,与非参数方法相比,它们需要更少的参数来表征大脑活动的变化。因此,fMRI数据分析的新方法具有同时减少模型参数,提高估计效率和足够的模型灵活性的特点。该项目将开发新的非凸优化算法,以解决分析fMRI数据的计算挑战。本研究将运用上述方法对人类情绪进行功能磁共振成像研究,探讨不同社会接触条件下大脑对消极情绪刺激的反应差异,并确定不同社会接触条件下情绪相关脑功能与伴随情感感受的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial-Temporal Analysis of Multi-Subject Functional Magnetic Resonance Imaging Data
  • DOI:
    10.1016/j.ecosta.2021.02.006
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Tingting Zhang;Minh Pham;G. Yan;Yaotian Wang;Sara E. Medina-DeVilliers;J. Coan
  • 通讯作者:
    Tingting Zhang;Minh Pham;G. Yan;Yaotian Wang;Sara E. Medina-DeVilliers;J. Coan
A Bayesian State-Space Approach to Mapping Directional Brain Networks
  • DOI:
    10.1080/01621459.2020.1865985
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Huazhang Li;Yaotian Wang;G. Yan;Yinge Sun;S. Tanabe;Chang-Chia Liu;M. Quigg;Tingting Zhang
  • 通讯作者:
    Huazhang Li;Yaotian Wang;G. Yan;Yinge Sun;S. Tanabe;Chang-Chia Liu;M. Quigg;Tingting Zhang
A VARIATIONAL BAYESIAN APPROACH TO IDENTIFYING WHOLE-BRAIN DIRECTED NETWORKS WITH FMRI DATA
  • DOI:
    10.1214/22-aoas1640
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Wang,Yaotian;Yan,Guofen;Zhang,Tingting
  • 通讯作者:
    Zhang,Tingting
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingting Zhang其他文献

PREED: Packet REcovery by Exploiting the Determinism in Industrial WSN Communication
PREED:利用工业 WSN 通信中的确定性进行数据包恢复
A novel and convenient method to immunize animals: Inclusion bodies from recombinant bacteria as antigen to directly immunize animals
一种新颖便捷的动物免疫方法:以重组菌包涵体为抗原直接免疫动物
  • DOI:
    10.5897/ajb10.2681
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ling Wang;Zhiying Zhang;Tingting Zhang;Jie Lei;Kun Xu;Zhanwei Li;Hanjiang Yang
  • 通讯作者:
    Hanjiang Yang
Development Status of Oil Stockpiling of Major Developed Countries and China
主要发达国家及中国石油库存发展现状
  • DOI:
    10.1007/978-981-15-9283-6_5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Zhang
  • 通讯作者:
    Tingting Zhang
Water footprint modeling and forecasting of cassava based on different artificial intelligence algorithms in Guangxi, China
基于不同人工智能算法的广西木薯水足迹建模与预测
  • DOI:
    10.1016/j.jclepro.2022.135238
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Mingfeng Tao;Tingting Zhang;Xiaomin Xie;Xiaojing Liang
  • 通讯作者:
    Xiaojing Liang
Chimeric antigen receptor T cells derived from CD7 nanobody exhibit robust antitumor potential against CD7-positive malignancies
来自 CD7 纳米抗体的嵌合抗原受体 T 细胞对 CD7 阳性恶性肿瘤表现出强大的抗肿瘤潜力
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Dan Chen;Fengtao You;Shufen Xiang;Yinyan Wang;Yafen Li;Huimin Meng;Gangli An;Tingting Zhang;Zixuan Li;Licui Jiang;Hai Wu;Binjie Sheng;Bozhen Zhang;Lin Yang
  • 通讯作者:
    Lin Yang

Tingting Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingting Zhang', 18)}}的其他基金

Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
  • 批准号:
    2242568
  • 财政年份:
    2023
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
  • 批准号:
    1758095
  • 财政年份:
    2018
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
  • 批准号:
    1209118
  • 财政年份:
    2012
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
ATD Collaborative Research: Statistical Modeling of Short-Read Counts in RNA-Seq
ATD 合作研究:RNA-Seq 中短读计数的统计建模
  • 批准号:
    1120756
  • 财政年份:
    2011
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Comprehensive multiomics analysis to elucidate temporal and spatial pathophysiology of respiratory diseases for their application to drug discovery.
综合多组学分析,阐明呼吸系统疾病的时空病理生理学,以应用于药物发现。
  • 批准号:
    22KJ1190
  • 财政年份:
    2023
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Image Analysis Tools for Pulmonary Spatial and Temporal Mapping
肺部时空测绘图像分析工具的开发
  • 批准号:
    RGPIN-2019-06238
  • 财政年份:
    2022
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Analysis of Brain Chemistry at Enhanced Spatial and Temporal Resolution using Microscale Sampling and Analysis
使用微尺度采样和分析以增强的时空分辨率深入分析脑化学
  • 批准号:
    10515445
  • 财政年份:
    2022
  • 资助金额:
    $ 11.07万
  • 项目类别:
A temporal and spatial analysis of permafrost derived materials on the Peel Plateau, NT, Canada
加拿大北领地皮尔高原永久冻土衍生材料的时空分析
  • 批准号:
    571083-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of Image Analysis Tools for Pulmonary Spatial and Temporal Mapping
肺部时空测绘图像分析工具的开发
  • 批准号:
    RGPIN-2019-06238
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of temporal and spatial control of mRNA translation that is mediated by subcellular structures and novel RNA processing
分析亚细胞结构和新型 RNA 加工介导的 mRNA 翻译的时间和空间控制
  • 批准号:
    21H02398
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatial-temporal Analysis of small-scale Determinants of the Covid-19 Pandemic
Covid-19 大流行的小规模决定因素的时空分析
  • 批准号:
    492768557
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Research Grants
Analysis of the spatial and temporal dynamics of marine bivalve evolution: Combining molecular and densely-sampled fossil data
海洋双壳类进化的时空动态分析:结合分子和密集采样的化石数据
  • 批准号:
    2049627
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
Spatial and temporal analysis of voltage-sensing phosphatase activity in sperm
精子中电压感应磷酸酶活性的时空分析
  • 批准号:
    20K07274
  • 财政年份:
    2020
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial-temporal analysis of social disintegration
社会解体的时空分析
  • 批准号:
    1948947
  • 财政年份:
    2020
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了