Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
基本信息
- 批准号:1209118
- 负责人:
- 金额:$ 10.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of two components, each motivated by the inference problem for functional magnetic resonance imaging (fMRI) data. In the first part, within the framework of generalized functional linear model (GFLM), a flexible semi-parametric model for neural hemodynamic response in the form of slope functions is introduced. To accommodate the variation of brain activity across different regions, stimulus types, and subjects, the new approach assumes the slope functions share the same but unknown functional shape for a given region and stimulus, while having subject-specific height, time to peak, and width. Several fast algorithms based on B-spline smoothing are proposed to estimate the model parameters for whole-brain analysis. The second part of the research focuses on building a novel Bayesian variable selection framework to study the relationship between individual traits and brain activity. The spline estimates of the brain hemodynamic responses from the first part are taken as predictors in a regression model where the response is the individual traits. Two types of priors are introduced jointly to achieve simultaneous variable selection and clustering.FMRI is one of the most effective neuroimaging technologies for understanding brain activity. In recent years, fMRI data collected from complex studies with multiple subjects have been widely used in psychological and medical research. This project will provide tools for modeling, analysis and computation for this type of fMRI data. Project findings will advance basic understanding of the inter-relations between nature and nurture in shaping individual differences in brain function and behavior, and suggest new directions for interdisciplinary research that combines statistics, neuroscience and psychology. The open source R/Matlab software developed from the research will provide valuable data analysis and educational tools for the scientific community.
该项目由两个部分组成,每个部分的动机是功能性磁共振成像(fMRI)数据的推理问题。第一部分在广义泛函线性模型(GFLM)的框架下,提出了一种以斜率函数形式表示的神经血流动力学反应的半参数模型。为了适应不同区域、刺激类型和受试者之间大脑活动的变化,新方法假设斜率函数对于给定区域和刺激具有相同但未知的函数形状,同时具有受试者特定的高度、达到峰值的时间和宽度。 提出了几种基于B样条平滑的全脑分析模型参数快速估计算法。研究的第二部分主要是建立一个新的贝叶斯变量选择框架来研究个体特征与大脑活动之间的关系。从第一部分的脑血流动力学响应的样条估计被视为回归模型中的预测因子,其中响应是个体特征。通过引入两种先验信息,实现了变量选择和聚类的同时进行。功能磁共振成像技术是了解大脑活动最有效的神经影像技术之一。近年来,从多个受试者的复杂研究中收集的fMRI数据已被广泛应用于心理学和医学研究。本计画将提供这类功能性磁振造影资料的建模、分析与计算工具。项目研究结果将促进对先天和后天之间在塑造大脑功能和行为的个体差异方面的相互关系的基本理解,并为结合统计学,神经科学和心理学的跨学科研究提出新的方向。从研究中开发的开源R/Matlab软件将为科学界提供有价值的数据分析和教育工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tingting Zhang其他文献
Water footprint modeling and forecasting of cassava based on different artificial intelligence algorithms in Guangxi, China
基于不同人工智能算法的广西木薯水足迹建模与预测
- DOI:
10.1016/j.jclepro.2022.135238 - 发表时间:
2022-11 - 期刊:
- 影响因子:11.1
- 作者:
Mingfeng Tao;Tingting Zhang;Xiaomin Xie;Xiaojing Liang - 通讯作者:
Xiaojing Liang
PREED: Packet REcovery by Exploiting the Determinism in Industrial WSN Communication
PREED:利用工业 WSN 通信中的确定性进行数据包恢复
- DOI:
10.1109/dcoss.2015.8 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Filip Barac;M. Gidlund;Tingting Zhang - 通讯作者:
Tingting Zhang
A human behavior model of multi-agent attention based on actor–observer switching for asynchronous motion tasks with limited field of view
基于演员-观察者切换的多智能体注意人类行为模型,适用于有限视野的异步运动任务
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tingting Zhang;K. Kühnlenz - 通讯作者:
K. Kühnlenz
2.3: Invited Paper: Stereoacuity measurement and the related factors
2.3:特邀论文:立体视觉测量及相关因素
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Tingting Zhang;Jinwei Xie;L. Xia;Xiaofeng Liu - 通讯作者:
Xiaofeng Liu
Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(III) nitrate pentahydrate
五水硝酸铋催化酰胺基烷基萘酚的三组分合成
- DOI:
10.1016/j.cclet.2011.10.008 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Min Wang;Yan Liang;Tingting Zhang;J. Gao - 通讯作者:
J. Gao
Tingting Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tingting Zhang', 18)}}的其他基金
Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
- 批准号:
2242568 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
- 批准号:
2048991 - 财政年份:2020
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
- 批准号:
1758095 - 财政年份:2018
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
ATD Collaborative Research: Statistical Modeling of Short-Read Counts in RNA-Seq
ATD 合作研究:RNA-Seq 中短读计数的统计建模
- 批准号:
1120756 - 财政年份:2011
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant