ATD Collaborative Research: Statistical Modeling of Short-Read Counts in RNA-Seq

ATD 合作研究:RNA-Seq 中短读计数的统计建模

基本信息

  • 批准号:
    1120756
  • 负责人:
  • 金额:
    $ 5.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Rapid and accurate detection of biothreat is important not only for containing its potential damages, but also for determining potential medical remedies. Extensive researches show that certain genes in infected cells have different mRNA expression levels for different pathogens.Thus, an accurate identification of the genes that react to pathogens and an accurate quantification of their expression variations are key steps in early biothreat detections. The emerging RNA-Seq technologies provide tens of millions of short sequence reads of the expressed genes, which, after mapping to the genome, can be converted to accurately represent gene expression levels. However, the conversion from sequence reads to gene expression levels is still problematic. In this project, The investigator and her colleagues will tackle this problem by modeling RNA-Seq data through a broad class of flexible nonlinear models, called sufficient dimension reduction (SDR) models; propose novel variable selection methods for SDR models; and develop theoretical underpinning of the effectiveness of the proposed methods. As a consequence, this effort will result in a powerful software suite for estimating gene expression levels from RNA-seq data and identifying marker genes reacting to specific pathogens in a unified framework. This project not only addresses some emerging issues in biothreat detections using high-throughput sequencing technologies, but also results in novel statistical methods andtheory broadly applicable to general statistical learning and prediction problems. More specifically, the proposed methods (i) produce innovative new methodologies for analyzing ultra-high dimensional data, (ii) inspire new lines of quantitative investigations in genomics, and (iii) offer a unique educational experience for both undergraduate and graduate students to participate in cutting-edge statistical and interdisciplinary research.
快速和准确地检测生物威胁不仅对控制其潜在损害很重要,而且对确定潜在的医疗补救措施也很重要。大量研究表明,感染细胞中的某些基因对不同的病原体具有不同的mRNA表达水平。因此,准确识别对病原体起反应的基因并准确量化其表达变化是早期生物威胁检测的关键步骤。新兴的RNA-Seq技术提供了数千万个表达基因的短序列reads,这些序列在定位到基因组后,可以被转换为准确地代表基因表达水平。然而,从序列读数到基因表达水平的转换仍然存在问题。在这个项目中,研究者和她的同事将通过广泛的柔性非线性模型(称为充分降维(SDR)模型)对RNA-Seq数据建模来解决这个问题;提出了新的SDR模型变量选择方法;并为所提出的方法的有效性提供理论基础。因此,这项工作将产生一个强大的软件套件,用于从RNA-seq数据中估计基因表达水平,并在统一的框架中识别对特定病原体起反应的标记基因。该项目不仅解决了利用高通量测序技术检测生物威胁的一些新问题,而且还产生了广泛适用于一般统计学习和预测问题的新统计方法和理论。更具体地说,所提出的方法(i)产生了分析超高维数据的创新方法,(ii)激发了基因组学定量研究的新思路,(iii)为本科生和研究生参与前沿统计和跨学科研究提供了独特的教育体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingting Zhang其他文献

PREED: Packet REcovery by Exploiting the Determinism in Industrial WSN Communication
PREED:利用工业 WSN 通信中的确定性进行数据包恢复
A novel and convenient method to immunize animals: Inclusion bodies from recombinant bacteria as antigen to directly immunize animals
一种新颖便捷的动物免疫方法:以重组菌包涵体为抗原直接免疫动物
  • DOI:
    10.5897/ajb10.2681
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ling Wang;Zhiying Zhang;Tingting Zhang;Jie Lei;Kun Xu;Zhanwei Li;Hanjiang Yang
  • 通讯作者:
    Hanjiang Yang
Development Status of Oil Stockpiling of Major Developed Countries and China
主要发达国家及中国石油库存发展现状
  • DOI:
    10.1007/978-981-15-9283-6_5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Zhang
  • 通讯作者:
    Tingting Zhang
Water footprint modeling and forecasting of cassava based on different artificial intelligence algorithms in Guangxi, China
基于不同人工智能算法的广西木薯水足迹建模与预测
  • DOI:
    10.1016/j.jclepro.2022.135238
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Mingfeng Tao;Tingting Zhang;Xiaomin Xie;Xiaojing Liang
  • 通讯作者:
    Xiaojing Liang
Chimeric antigen receptor T cells derived from CD7 nanobody exhibit robust antitumor potential against CD7-positive malignancies
来自 CD7 纳米抗体的嵌合抗原受体 T 细胞对 CD7 阳性恶性肿瘤表现出强大的抗肿瘤潜力
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Dan Chen;Fengtao You;Shufen Xiang;Yinyan Wang;Yafen Li;Huimin Meng;Gangli An;Tingting Zhang;Zixuan Li;Licui Jiang;Hai Wu;Binjie Sheng;Bozhen Zhang;Lin Yang
  • 通讯作者:
    Lin Yang

Tingting Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingting Zhang', 18)}}的其他基金

Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
  • 批准号:
    2242568
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
  • 批准号:
    2048991
  • 财政年份:
    2020
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
  • 批准号:
    1758095
  • 财政年份:
    2018
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
  • 批准号:
    1209118
  • 财政年份:
    2012
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 5.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了