Collaborative Research: Linking microplastic decomposition rates in soils to their microbe-mineral associations using carbon stable isotopes and microspectroscopy
合作研究:利用碳稳定同位素和显微光谱学将土壤中的微塑料分解率与其微生物矿物关联联系起来
基本信息
- 批准号:2246646
- 负责人:
- 金额:$ 11.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plastics use has skyrocketed globally since the mid-1950s due to a combination of their utility and low price. A large fraction is for single-use applications. Consequently, more than 25 million metric tons of plastic are annually discarded into terrestrial environments. Bio-based plastics produced from readily renewable carbon sources (i.e., corn) are increasingly being used as substitutes for legacy plastics sourced from fossil fuels. Bio-based plastics are advantageous because their carbon is converted from atmospheric CO2 instead of petroleum. Furthermore, some of these plastics are designed to biodegrade in bioactive environments. All plastics are broken down in the environment by chemical and physical processes into smaller microplastics (less than 5 mm in size) that may become accessible to microorganisms and utilized for their life function or survival. The fate of microplastic residues depends on their degradation in the environment. This research tracks the degradation of microplastic particles of polylactic acid (PLA, a bio-based plastic) and polyethylene terephthalate (PET, a petroleum-based plastic) in soils, where their slow decomposition can lead to plastic accumulation. The research exploits unique carbon isotopic ‘tags’ naturally inherent or artificially introduced to plastics to quantify decomposition with imaging and microbial community analysis to identify how degradation is occurring. The main goal of the work is to monitor the transferal of the isotopic tags to microbial biomass, and eventually, the carbon dioxide and/or methane gas microbes produce or “exhale”. The research is important because it will expand society’s limited understanding of how plastics impact soil health and function, and natural earth processes (i.e., carbon cycling) given plastics’ potential to alter the natural emission of climate warming gases like carbon dioxide and methane in soil systems. Bringing the science of microplastics to a diverse community is a priority of the research team. The project involves and supports secondary, undergraduate, and graduate level students that will be co-mentored by a multidisciplinary faculty team. Students will be involved in research objectives and trained in communicating science to the public. Importantly, students will gain experience across three increasingly related fields for solving the plastic pollution crisis: geochemistry, analytical chemistry, and polymer/green chemistry.Microplastic decomposition occurs through synergistic abiotic weathering of the plastic and key enzymatic and/or microbial interactions. Due to their acclimation to anthropogenic waste, it is hypothesized that the soil microbiome will assimilate and mineralize microplastics, and that natural soil processes like physical mixing and chemical hydrolysis will promote the integration of soil plastics within aggregates and affect the overall assimilation and mineralization of soil organic carbon and plastics by the soil microbiome. The hypotheses will be tested in controlled soil microcosms by utilizing naturally abundant and isotopically labeled (synthesized) polymers that are experimentally degraded and exposed to soils and their native microbiome. Isotopic labels offer an approach to identify assimilation and/or mineralization since they will separate these and other competing processes and/or those that may be impractical to measure in a short period. The incorporation of the plastics’ isotope label will be monitored via phospholipid fatty acid biomarkers and final mineralization gases (i.e., carbon dioxide and methane) using isotope ratio mass spectrometry. Spectroscopy based approaches (i.e., synchrotron-based scanning transmission X-ray microscopy and near-edge X-ray absorption fine-structure spectroscopy) will account for the plastics’ reactivity and association with soil aggregates. The combination of stable isotopic, spectral, and isotopic mass balance approaches will establish a fundamental understanding of plastic decomposition, and include a modeling of their assimilation and mineralization, transformation to lower weight products, and final conversion to carbon dioxide and methane in soils. This research will further basic science understanding of physical, chemical, and biological processes in soils and address a topic of great current practical interest in environmental geochemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自20世纪50年代中期以来,由于其实用性和低价格的结合,塑料的使用在全球范围内飙升。很大一部分是一次性应用。因此,每年有超过2500万公吨的塑料被丢弃到陆地环境中。由容易再生的碳源生产的生物基塑料(即,玉米)越来越多地被用作化石燃料制成的传统塑料的替代品。生物基塑料是有利的,因为它们的碳是从大气中的二氧化碳而不是石油转化而来的。此外,这些塑料中的一些被设计为在生物活性环境中生物降解。所有塑料在环境中通过化学和物理过程被分解成较小的微塑料(尺寸小于5毫米),微生物可能会接触到这些微塑料,并利用它们的生命功能或生存。微塑料残留物的命运取决于它们在环境中的降解。这项研究跟踪了聚乳酸(PLA,一种生物基塑料)和聚对苯二甲酸乙二醇酯(PET,一种石油基塑料)微塑料颗粒在土壤中的降解,它们的缓慢分解可能导致塑料积累。该研究利用塑料天然固有或人工引入的独特碳同位素“标签”,通过成像和微生物群落分析来量化分解,以确定降解是如何发生的。这项工作的主要目标是监测同位素标记向微生物生物量的转移,以及最终监测微生物产生或“呼出”的二氧化碳和/或甲烷气体。这项研究很重要,因为它将扩大社会对塑料如何影响土壤健康和功能以及自然地球过程(即,碳循环),因为塑料有可能改变土壤系统中二氧化碳和甲烷等气候变暖气体的自然排放。将微塑料科学带到多元化的社区是研究团队的优先事项。该项目涉及并支持中学,本科和研究生水平的学生,将由多学科教师团队共同指导。学生将参与研究目标,并接受向公众传播科学的培训。重要的是,学生将获得三个日益相关的领域解决塑料污染危机的经验:地球化学,分析化学和聚合物/绿色化学。微塑料分解通过塑料的协同非生物风化和关键的酶和/或微生物相互作用发生。由于它们对人为废物的适应,假设土壤微生物组将同化和矿化微塑料,而物理混合和化学水解等自然土壤过程将促进土壤塑料在团聚体中的整合,并影响土壤微生物组对土壤有机碳和塑料的整体同化和矿化。这些假设将在受控的土壤微观世界中进行测试,方法是利用天然丰富的同位素标记(合成)聚合物,这些聚合物经过实验降解并暴露于土壤及其原生微生物组。同位素标记提供了一种识别同化和/或矿化的方法,因为它们将这些过程与其他竞争过程和/或那些在短时间内无法测量的过程分开。将通过磷脂脂肪酸生物标志物和最终矿化气体(即,二氧化碳和甲烷)。基于光谱的方法(即,基于同步加速器的扫描透射X射线显微镜和近边缘X射线吸收精细结构光谱学)将解释塑料的反应性和与土壤团聚体的关联。稳定同位素,光谱和同位素质量平衡方法的结合将建立塑料分解的基本理解,并包括其同化和矿化,转化为较低重量的产品,并最终转化为二氧化碳和甲烷在土壤中的建模。该研究将进一步加深对土壤中物理、化学和生物过程的基础科学理解,并解决当前环境地球化学中具有重大实际意义的主题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Bostick其他文献
Benjamin Bostick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Bostick', 18)}}的其他基金
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Changes in river-aquifer exchange induced by groundwater pumping, and their effect on arsenic contamination in the Red River Delta, Vietnam
合作研究:地下水抽取引起的河流-含水层交换变化及其对越南红河三角洲砷污染的影响
- 批准号:
1521356 - 财政年份:2015
- 资助金额:
$ 11.93万 - 项目类别:
Continuing Grant
Collaborative Research: Role of Polyoxotungstates in Enhanced Solubility and Transport of Tungsten in the Environment
合作研究:多钨酸盐在增强钨在环境中的溶解度和传输方面的作用
- 批准号:
1310368 - 财政年份:2013
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
相似国自然基金
基于多官能团协同强化的热塑性复合材
料/金属异种材料连接方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
变刚度承载-耗能型连接装配式联肢复合墙协同工作机理与设计方法研究
- 批准号:52308203
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型钢-UHPC组合桥面板中短栓钉-PBL连接件协同作用机制及失效机理研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
复合助焊剂与声场协同作用下锡焊点连接机理及剪切性能研究
- 批准号:52361009
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
复合材料/钛合金叠层结构机械连接与冷挤压协同强化机理研究
- 批准号:52375454
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
半刚性连接钢框架-墙板支撑体系协同工作机理及抗震性能研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
超声/辅助热源协同增强的铝合金厚板搅拌摩擦焊新方法与连接机理研究
- 批准号:52164045
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
共价有机框架化合物中节点单元与连接单体电化学协同储能及机理研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小薄膜电容的三角形连接级联H桥STATCOM建模与运行研究
- 批准号:52007111
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
正交异性钢桥面板RF连接疲劳开裂过程的协同工作机理与分析方法研究
- 批准号:2020JJ5143
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
- 批准号:
2346372 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
- 批准号:
2312302 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
- 批准号:
2346371 - 财政年份:2024
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
- 批准号:
2311092 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
- 批准号:
2422709 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
- 批准号:
2341997 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243099 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Continuing Grant
Collaborative Research: Bioarchaeology, Osteoimmunology, and Ecoimmunology: Linking Inflammation, Life History Tradeoffs, and Biocultural Change
合作研究:生物考古学、骨免疫学和生态免疫学:将炎症、生活史权衡和生物文化变革联系起来
- 批准号:
2316573 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
- 批准号:
2311091 - 财政年份:2023
- 资助金额:
$ 11.93万 - 项目类别:
Standard Grant