Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
基本信息
- 批准号:2350049
- 负责人:
- 金额:$ 14.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The theory of von Neumann algebras, originating in the 1930's as a mathematical foundation for quantum physics, has since evolved into a beautifully rich subfield of modern functional analysis. Studying the precise structure of von Neumann algebras is rewarding for many reasons, as they appear naturally in diverse areas of modern mathematics such as dynamical systems, ergodic theory, analytic and geometric group theory, continuous model theory, topology, and knot theory. They also continue to be intimately involved in a variety of fields across science and engineering, including quantum physics, quantum computation, cryptography, and algorithmic complexity. The PI will focus on developing a new horizon for research on structural properties of von Neumann algebras, by combining entropy (quantitative) and boundary (qualitative) methods, with applications to various fundamental open questions. This project will also contribute to US workforce development through diversity initiatives and mentoring of graduate students and early career researchers. In this project, the PI will develop two new research directions in the classification theory of finite von Neumann algebras: applications of Voiculescu's free entropy theory to the structure of free products and of ultrapowers of von Neumann algebras; the small at infinity compactification and structure of von Neumann algebras arising from relatively properly proximal groups. This will involve a delicate study of structure, rigidity and indecomposability properties via innovative interplays between three distinct successful approaches: Voiculescu's free entropy theory, Popa's deformation rigidity theory, Ozawa's theory of small at infinity boundaries and amenable actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冯·诺依曼代数理论起源于20世纪30年代,是量子物理学的数学基础,后来发展成为现代泛函分析的一个非常丰富的分支。研究冯诺依曼代数的精确结构是有益的,原因有很多,因为它们自然地出现在现代数学的各个领域,如动力系统,遍历理论,分析和几何群论,连续模型理论,拓扑学和纽结理论。 他们还继续密切参与科学和工程的各个领域,包括量子物理学,量子计算,密码学和算法复杂性。 PI将专注于通过结合熵(定量)和边界(定性)方法,并将其应用于各种基本开放问题,为冯诺依曼代数的结构性质研究开辟新的视野。该项目还将通过多样性倡议和对研究生和早期职业研究人员的指导,为美国劳动力发展做出贡献。在这个项目中,PI将在有限冯诺依曼代数的分类理论中开发两个新的研究方向:Voiculescu的自由熵理论在冯诺依曼代数的自由产品和超幂结构中的应用;无穷小紧致化和冯诺依曼代数的结构产生于相对适当的邻近群。这将涉及通过三种不同的成功方法之间的创新相互作用对结构,刚性和不可分解性进行细致的研究:Voiculescu的自由熵理论,Popa的变形刚性理论,小泽一郎的无穷小的理论和顺从的行动。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查的支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srivatsav Kunnawalkam Elayavalli其他文献
On conjugacy and perturbation of subalgebras
关于子代数的共轭和微扰
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Gao;Srivatsav Kunnawalkam Elayavalli;Gregory Patchell;Hui Tan - 通讯作者:
Hui Tan
Remarks on the diagonal embedding and strong 1-boundedness
关于对角嵌入和强 1-有界性的备注
- DOI:
10.4171/dm/918 - 发表时间:
2022 - 期刊:
- 影响因子:0.9
- 作者:
Srivatsav Kunnawalkam Elayavalli - 通讯作者:
Srivatsav Kunnawalkam Elayavalli
Vanishing first cohomology and strong 1-boundedness for von Neumann algebras
冯诺依曼代数的消失第一上同调和强 1 有界性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Ben Hayes;David Jekel;Srivatsav Kunnawalkam Elayavalli - 通讯作者:
Srivatsav Kunnawalkam Elayavalli
Cartan subalgebras in von Neumann algebras associated with graph product groups
与图积群相关的冯诺依曼代数中的嘉当子代数
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
I. Chifan;Srivatsav Kunnawalkam Elayavalli - 通讯作者:
Srivatsav Kunnawalkam Elayavalli
Random permutation matrix models for graph products
图产品的随机排列矩阵模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
I. Charlesworth;Rolando de Santiago;Ben Hayes;David Jekel;Srivatsav Kunnawalkam Elayavalli - 通讯作者:
Srivatsav Kunnawalkam Elayavalli
Srivatsav Kunnawalkam Elayavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
Integrable systems/solitons, such as methods of their construction or boundary conditions
可积系统/孤子,例如其构造方法或边界条件
- 批准号:
2620748 - 财政年份:2021
- 资助金额:
$ 14.51万 - 项目类别:
Studentship
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 14.51万 - 项目类别:
Standard Grant
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Coupling of fictitious domain methods and the boundary element method for the analysis of acoustic metamaterials
虚拟域方法与边界元方法耦合用于声学超材料分析
- 批准号:
423317638 - 财政年份:2019
- 资助金额:
$ 14.51万 - 项目类别:
Research Grants
Improved Methods for Determining Soil-Atmosphere Flux Boundary Conditions at Mine Waste Repositories
确定矿山废物处置场土壤-大气通量边界条件的改进方法
- 批准号:
RGPIN-2015-06349 - 财政年份:2019
- 资助金额:
$ 14.51万 - 项目类别:
Discovery Grants Program - Individual
New implementations of the Calderon preconditioning for boundary element methods
边界元方法 Calderon 预处理的新实现
- 批准号:
18K18063 - 财政年份:2018
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Parabolic methods for elliptic boundary value problems
椭圆边值问题的抛物线方法
- 批准号:
DP180100431 - 财政年份:2018
- 资助金额:
$ 14.51万 - 项目类别:
Discovery Projects
On the stability of boundary integral methods in wave problems
波浪问题中边界积分法的稳定性
- 批准号:
18H03251 - 财政年份:2018
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An assessment of the efficiency of isogeometric boundary integral methods
等几何边界积分方法效率的评估
- 批准号:
18K19783 - 财政年份:2018
- 资助金额:
$ 14.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)