Model-theoretic tree properties and their applications

模型理论树的性质及其应用

基本信息

  • 批准号:
    2246992
  • 负责人:
  • 金额:
    $ 19.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Model theory is a branch of mathematical logic dedicated to studying definable sets in mathematical structures. Model theorists aim to isolate certain combinatorial features enjoyed by definable sets in tame structures and to develop a general theory of structures satisfying these properties. This unifies and explains the tameness of a structure or family of structures, but also provides an engine for proving deep structure theorems by exploiting the combinatorial similarity of a structure under analysis to well-understood mathematical objects. The model-theoretic notion of simplicity was a distillation of the tameness of sets definable in random graphs, pseudo-finite fields, and algebraically closed difference fields and has served as a key ingredient in applications of model theory to combinatorics and algebraic dynamics. Simplicity was the first of the model-theoretic tree properties to be isolated and studied, but since then there have been a number of model-theoretic properties that have received intensive study, generalizing and deepening the achievements of simplicity theory. The PI will continue to develop the theory of model-theoretic tree properties and pursue applications in algebra and combinatorics. The project also provides research training opportunities for graduate students. The simple theories were defined by Shelah as the class of theories without the tree property, a combinatorial property of a formula that he isolated in the study of independence in stable theories. The first applications were set-theoretic, but the core tools of simplicity theory also led to a consolidation of the techniques at play in the analysis of concrete structures coming from algebra and combinatorics, most notably in the case of pseudo-finite fields and smoothly approximable structures built out of classical geometries over finite fields. The development of the theory, then, sparked a two-way exchange between the theory and the examples, leading to refined understanding of core notions in model theory. The template established by simple theories, of a theory for class of theories defined by a combinatorial condition on trees of definable sets built on a theory of independence, was successfully replicated for a variety of dividing lines. Moreover, this extension has revealed striking connections and applications to combinatorics, allowed for the analysis of core new algebraic examples, and led to the resolution of difficult open problems in model theory. This project takes a systematic approach to model-theoretic tree properties, consolidating the core techniques to address both internal questions within model theory and applications to a diverse array of structures coming from algebra, geometry, and combinatorics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论是数理逻辑的一个分支,致力于研究数学结构中的可定义集合。模型理论家的目标是分离TAME结构中可定义集所享有的某些组合特征,并发展满足这些性质的结构的一般理论。这统一并解释了结构或结构族的驯服,但也提供了一个引擎,通过利用分析中的结构与众所周知的数学对象的组合相似性来证明深层结构定理。模型论的简单性概念是可在随机图、伪有限域和代数闭差域中定义的集合的温和性的升华,并已成为模型理论应用于组合学和代数动力学的关键成分。简单性是模型理论树性质中最早被分离和研究的,但从那时起,已经有许多模型理论性质得到了深入的研究,推广和深化了简单性理论的成果。PI将继续发展模型理论树的性质,并追求在代数和组合学中的应用。该项目还为研究生提供了研究培训机会。简单理论由谢拉定义为没有树性质的理论类,树性质是他在研究稳定理论中的独立性时分离出来的公式的组合性质。最初的应用是集合论,但简单性理论的核心工具也导致了在分析来自代数和组合学的具体结构时所使用的技术的巩固,最显著的是在伪有限域和有限域上由经典几何建立的光滑可逼近结构的情况下。于是,该理论的发展引发了理论和实例之间的双向交流,导致了对模型理论中核心概念的精细化理解。通过简单理论建立的模板,由建立在独立理论上的可定义集树上的组合条件定义的一类理论的理论,被成功地复制到各种分界线上。此外,这一扩展揭示了组合数学的显著联系和应用,允许分析核心的新代数例子,并导致解决模型理论中的困难开放问题。这个项目对模型理论树的性质采取了一种系统的方法,整合了核心技术来解决模型理论中的内部问题和应用于来自代数、几何和组合学的各种结构。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Ramsey其他文献

Samuel Ramsey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
  • 批准号:
    2337554
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
  • 批准号:
    2318970
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Research on Game Theoretic-based Mobile Crowdsensing Ecosystem in Internet of Things
基于博弈论的物联网移动群智生态系统研究
  • 批准号:
    23K16877
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了