Perfect Electromagnetic Teleporting Metasurface Wormholes
完美电磁瞬移超表面虫洞
基本信息
- 批准号:2247287
- 负责人:
- 金额:$ 34.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metasurfaces have found ubiquitous use in electromagnetics engineering and wireless communication research today. Metasurfaces are 2D arrangements of ‘meta-atoms’, which operate much under the same principles as ordinary light-matter interaction under long-wavelength illumination. For example, when optical light with a wavelength on the order of hundreds of nanometers interacts with the atoms comprising the surface of a table, since the impinging wavelength is thousands of times longer than the breadth of an atom, only the average response of the collection of atoms is perceived (we see the table, not the atoms). By designing materials comprising of designer ‘meta-atoms’ which are at least ten times smaller than the impinging wavelength, the light-matter interaction can be engineered leading to novel wavefront control and electromagnetic phenomena. Most of these metasurfaces, however, are planar. Coevolving with developing 5G/6G communications standards, metasurfaces used for channel optimization will need to also be conformal. In dense urban environments where diffraction strengths of new high-frequency communication frequencies are reduced, conformal metasurfaces which can route electromagnetic energy around corners of building can prove useful. In this work, metasurfaces are designed to create tunnel-like connections through space connecting two space wave ports at distant locations (on opposite sides of a building for example). These conformal teleporting metasurfaces can be used to transfer electromagnetic waves from one side of a building around its corner to an adjacent side using metasurfaces shaped with a 90-degree bend. Devices like these can enhance 5G/6G communications channels using passive and lossless metasurfaces which require no electrical connections to operate, simply affixed to a building similar to hanging a painting. This research will impact education and outreach by creating demonstration days at local high schools in the Blacksburg, VA area, and disseminating the results through new courses at Virginia Tech and short courses at conferences, and engaging undergraduates in research.The principal objectives of this project are to introduce perfect electromagnetic teleporting metasurfaces to the research community, to use the concepts to optimize telecommunications channels in urban environments by routing electromagnetic energy around corners of buildings, and to develop conformal metasurface design approaches which can support the new 5G/6G communications standards where conformal reconfigurable intelligent surfaces have been included (UAV bodies for example). Perfect electromagnetic teleporting metasurfaces create tunnel-like connections through space connecting two space wave ports at distant locations (on opposite sides of a building for example). The incident plane wave field will be absorbed at port 1, perfectly converted into a surface wave which connects the two ports and transfers/delivers power between them, and reradiated from port 2 located at a distant location. The reradiated field from port 2 will be designed with control over its phase and amplitude utilizing all of the power contained in the incident field in a completely passive and lossless way. As the metasurface teleports all of the available energy in the incident wave to the reradiated wave, the operation is said to be perfect. To date, perfect conformal teleporting metasurface operation has not been demonstrated. This work will enable the first experimental demonstration of these types of metasurfaces and will undoubtedly open up new streams of research in the area with unprecedented applications springing henceforth. The designs will be enabled by coupling integral equations with rapid optimization techniques and novel realization approaches based on additive manufacturing and conformal printed circuit design. literature on unit cell design for conformal metasurfaces is very scarce, and one attempting to realize a conformal metasurface using printed circuits may not find a suitable approach when surveying current literature. Hence, this work will also provide approaches to engineers and scientists who need to design and realize conformal metasurfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,超表面在电磁学工程和无线通信研究中得到了广泛的应用。超表面是“元原子”的二维排列,其运作原理与长波照明下的普通光-物质相互作用基本相同。例如,当波长为数百纳米的光学光与组成桌子表面的原子相互作用时,由于入射波长比原子的宽度长数千倍,因此只能感知到原子集合的平均响应(我们看到的是桌子,而不是原子)。通过设计由设计者的“元原子”组成的材料,这些“元原子”比入射波长至少小十倍,可以设计光-物质相互作用,从而导致新的波前控制和电磁现象。然而,这些超表面中的大多数是平面的。随着5G/6G通信标准的发展,用于信道优化的元表面也需要是保形的。在密集的城市环境中,新高频通信频率的衍射强度降低,可以在建筑物角落周围传输电磁能量的共形超表面可以证明是有用的。在这项工作中,超表面被设计成通过空间创建隧道般的连接,将两个空间波端口连接在遥远的位置(例如在建筑物的对面)。这些共形传送超表面可用于将电磁波从建筑物的一侧转移到建筑物拐角处的另一侧,使用90度弯曲的超表面。像这样的设备可以使用无源和无损的超表面来增强5G/6G通信通道,这些超表面不需要电气连接即可操作,只需将其粘贴在建筑物上,类似于挂一幅画。这项研究将通过在弗吉尼亚州布莱克斯堡地区的当地高中创建示范日,并通过弗吉尼亚理工大学的新课程和会议上的短期课程传播结果,以及吸引本科生参与研究,影响教育和推广。该项目的主要目标是为研究界引入完美的电磁传送元表面,利用这些概念通过在建筑物拐角处路由电磁能来优化城市环境中的电信通道,并开发可支持新的5G/6G通信标准的保形元表面设计方法,其中包括保形可重构智能表面(例如无人机机身)。完美的电磁传送超表面通过空间创建隧道般的连接,将两个空间波端口连接在遥远的位置(例如,在建筑物的对面)。入射平面波场在端口1处被吸收,完美地转化为连接两个端口并在两个端口之间传输/传递功率的面波,并从位于较远位置的端口2辐射出去。从端口2的辐射场将被设计为控制其相位和幅度,以完全被动和无损的方式利用入射场中包含的所有功率。当超表面将入射波中的所有可用能量传送到辐射波时,该操作被认为是完美的。到目前为止,还没有证明完美的共形传送超表面操作。这项工作将使这些类型的超表面的第一次实验演示成为可能,并且无疑将在该领域开辟新的研究流,今后将出现前所未有的应用。这些设计将通过将积分方程与快速优化技术和基于增材制造和保形印刷电路设计的新颖实现方法相结合来实现。关于共形超表面的单元胞设计的文献非常少,而一个试图用印刷电路实现共形超表面的人在调查现有文献时可能找不到合适的方法。因此,这项工作也将为需要设计和实现保形元表面的工程师和科学家提供方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Budhu其他文献
Jordan Budhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Research Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
CAREER: Gravitational and Electromagnetic Waves on Black Holes
职业:黑洞上的引力波和电磁波
- 批准号:
2336118 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Continuing Grant
Investigating Constraints on Induction in Cryospheres with a Lander for Electromagnetic Sounding (ICICLES)
使用电磁探测着陆器 (ICICLES) 研究冰冻圈感应的约束
- 批准号:
ST/Y510014/1 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Research Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
- 批准号:
2403871 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
ERI: EMRadar: A Practical Sensing System on the Electromagnetic Side-Channel of IoT
ERI:EMRadar:物联网电磁侧信道的实用传感系统
- 批准号:
2347409 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant