Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles

合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用

基本信息

  • 批准号:
    2300020
  • 负责人:
  • 金额:
    $ 28.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Catalysis program in the Division of Chemistry, David Flaherty (Georgia Institute of Technology), David HIbbitts (University of Florida), and Ayman Karim (Virginia Polytechnical Institute) will examine the connections among the structure, dynamics, and catalysis of reactions with oxygen on bimetallic nanoparticles. The team will create, characterize, simulate, and test how atoms of distinct metals move and facilitate reactions upon the surfaces of nanoparticles comprised primarily of gold with small amounts (1-5%) of a second element such as palladium or platinum. These materials are commonly described as single atom alloy (SAA) catalysts. These materials offer high rates and selectivities for numerous reactions important for domestic production of energy carriers and platform chemicals (e.g., valorization of biomass, shale gas, operation of fuel cells and electrolyzers). SAA currently suffer from a distressingly low number of active sites per gram of precious metal used. The collaborative team aims to develop methods to create SAA nanoparticles with smaller diameters ( 2 nm) to remedy this problem, and then test if the emergent and beneficial catalytic properties of these SAA are preserved as the size of the nanoparticles decreases. Here, the team will combine cutting-edge methods in quantum chemical simulations and multiscale modeling, characterization of operating catalysts using synchrotron methods, and catalyst testing and spectroscopy to learn how the nanoparticles restructure in different combinations of reactive gases relevant for catalysis (e.g., oxygen, hydrogen, carbon monoxide). Subsequently, the team will assess how rates and selectivities for a testbed reaction (reduction of oxygen with hydrogen) depend on the spatial organization of the atoms on the nanoparticle surface. Methods that will be developed will be useful for other dynamic catalyst systems and will be integrated into graduate-level courses. The proposed work involves lab-based education of graduate and undergraduate students and focused efforts to increase participation of women in catalysis science, especially with NSF REU (Research Experiences for Undergraduates) opportunities and cross-training of researchers across the three partnering institutions.Under this award, the collaborative Flaherty/Hibbitts/Karim team aims to learn how the structure, dynamics, and catalytic properties of bimetallic and SAA materials depend upon mean particle diameters, composition, and support identity, all factors that impact the coordinative saturation of surface atoms and the identity of their nearest and next-nearest neighbor atoms. The team will couple precise synthesis, advanced characterization techniques (including n situ, operando X-ray absorption spectroscopy, microcalorimetry, infrared spectroscopy), and computational methods (simulations of full nanoparticles with density functional theory and kinetic Monte Carlo) to address the complexity and dynamics of SAA catalysts. A testbed reaction system with rates and selectivities proven to be structure-sensitive with respect to these materials (H2 + O2 → H2O2) will be used to probe the surface structures of active catalysts, a challenge as the high pressures and complex solvents used often render characterization difficult. First, Au-rich bimetallic alloy nanoparticles (i.e., M1Aux materials, where M = Pd, Pt, Rh) with mean diameters of 1-2, ~6 and ~10 nm will be created, their post-synthesis structures will be characterized, and then the influence of adsorption and reactions on their structures will be examined over extended periods. Second, the thermodynamic relationships among adsorption energies, active site motifs, and nanoparticle structure will be determined. Third, the fundamental connections surrounding elemental identity, mole fraction, and coordination of the reactive metal and reaction rates, selectivities and barriers for H2O2 and H2O formation will be examined.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,大卫弗莱厄蒂(格鲁吉亚理工学院)、大卫希比茨(佛罗里达大学)和艾曼卡里姆(弗吉尼亚理工学院)将研究纳米颗粒上氧反应的结构、动力学和催化作用之间的联系。 该团队将创建,表征,模拟和测试不同金属的原子如何移动并促进主要由金和少量(1-5%)第二元素(如钯或铂)组成的纳米颗粒表面的反应。这些材料通常被描述为单原子合金(SAA)催化剂。这些材料为许多反应提供了高速率和选择性,这些反应对于能量载体和平台化学品的国内生产是重要的(例如,生物质、页岩气、燃料电池和电解槽的运行)。SAA目前遭受每克所用贵金属的活性位点数量低得令人沮丧。该合作团队的目标是开发方法来创建具有较小直径(2 nm)的SAA纳米颗粒来解决这个问题,然后测试这些SAA的新兴和有益的催化特性是否随着纳米颗粒尺寸的减小而保留。在这里,该团队将联合收割机结合量子化学模拟和多尺度建模中的尖端方法,使用同步加速器方法表征操作催化剂,以及催化剂测试和光谱学,以了解纳米颗粒如何在与催化相关的反应气体的不同组合中重构(例如,氧、氢、一氧化碳)。随后,该团队将评估测试床反应(用氢还原氧)的速率和选择性如何取决于纳米颗粒表面原子的空间组织。将开发的方法将是有用的其他动态催化剂系统,并将被纳入研究生课程。拟议的工作涉及研究生和本科生的实验室教育,并集中努力增加妇女参与催化科学,特别是与NSF REU(本科生的研究经验)的机会和跨三个合作机构的研究人员的交叉培训。在这个奖项下,合作的Flaherty/Hibbitts/Karim团队旨在了解如何结构,动态,和SAA材料的催化性能取决于平均粒径、组成和载体特性,所有这些因素都影响表面原子的配位饱和度和它们最近和次最近邻原子的特性。该团队将结合精确的合成,先进的表征技术(包括原位,操作X射线吸收光谱,微量热法,红外光谱)和计算方法(用密度泛函理论和动力学蒙特卡罗模拟完整的纳米粒子)来解决SAA催化剂的复杂性和动力学。具有速率和选择性的测试床反应系统被证明对这些材料(H2 + O2 → H2 O2)具有结构敏感性,将用于探测活性催化剂的表面结构,这是一个挑战,因为高压和使用的复杂溶剂通常使表征变得困难。首先,富含Au的纳米合金纳米颗粒(即,M1Aux材料,其中M = Pd,Pt,Rh),平均直径为1-2,~6和~10 nm,将对其合成后结构进行表征,然后将在较长时间内检查吸附和反应对其结构的影响。 其次,吸附能,活性位点图案,和纳米颗粒结构之间的热力学关系将被确定。第三,将检查围绕元素身份,摩尔分数和活性金属的协调和反应速率,选择性和H2 O2和H2O形成的障碍的基本联系。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hibbitts其他文献

Electronic and geometric features controlling the reactivity of Mg-vanadate and V<sub>2</sub>O<sub>5</sub> surfaces toward the initial C–H activation of C<sub>1</sub>–C<sub>3</sub> alkanes – A DFT+U study
  • DOI:
    10.1016/j.jcat.2024.115800
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hansel Montalvo-Castro;Álvaro Loaiza-Orduz;Randall J. Meyer;Craig Plaisance;David Hibbitts
  • 通讯作者:
    David Hibbitts
Predicting a generalized mechanism of branched alkane hydrogenolysis on Ru, Ir, and Pt surfaces relevant to polymer upcycling applications
预测与聚合物升级循环应用相关的 Ru、Ir 和 Pt 表面上支链烷烃氢解的广义机制
  • DOI:
    10.1016/j.jcat.2025.116200
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Andy Simonson;Lydia Thies;David Hibbitts
  • 通讯作者:
    David Hibbitts

David Hibbitts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hibbitts', 18)}}的其他基金

CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    1954426
  • 财政年份:
    2020
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
CAREER: Elucidating Mechanisms and the Effects of Zeolite Framework, Acid Site Location and Strength in Methanol-to-Hydrocarbon Reactions
职业:阐明甲醇与碳氢化合物反应中沸石骨架、酸位点和强度的作用机制和影响
  • 批准号:
    1942684
  • 财政年份:
    2020
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Wax-Water Interactions in Pores of Fischer-Tropsch Synthesis Catalysts
了解和控制费托合成催化剂孔隙中的蜡-水相互作用
  • 批准号:
    1933054
  • 财政年份:
    2019
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: Identifying the roles of atomically dispersed Rh, support interactions, and environmental conditions in automotive NO reduction catalysis
合作研究:GOALI:确定原子分散的 Rh、支持相互作用和环境条件在汽车 NO 还原催化中的作用
  • 批准号:
    1803165
  • 财政年份:
    2018
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316136
  • 财政年份:
    2024
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316137
  • 财政年份:
    2024
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227128
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303568
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Structure and function: How microenvironment facilitates antimicrobial response to environmental stress in a defensive symbiosis
合作研究:结构和功能:微环境如何促进防御性共生中的抗菌剂对环境应激的反应
  • 批准号:
    2247195
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: The challenges of living small: functional tradeoffs in the vertebral bone structure of diminutive mammals
合作研究:RUI:小型生活的挑战:小型哺乳动物椎骨结构的功能权衡
  • 批准号:
    2223964
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了