Sieves and primes
筛子和素数
基本信息
- 批准号:2301264
- 负责人:
- 金额:$ 37.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Questions about properties of the positive integers have fascinated people for thousands of years and have recently found applications in computer science, information security and signal processing. In this field, known as number theory, the prime numbers play a central role. Fundamental questions revolve around patterns in the primes, gaps between primes, and how primes of special types are distributed. Since the early 20th century, sieve methods have been one of the chief tools we have for analyzing these problems, but the limitations of these methods are poorly understood, and discovering the limitations is a major open problem in the field. This award will enable the PI to continue his work understanding and exploring sieve methods and the distribution of primes. Success in this endeavor will help unlock many of the mysteries of prime numbers and have a significant impact on many areas of mathematics and information theory. Grant funds will also be used to train and mentor graduate students working in number theory. The PI will develop new methods of probing the limitations of sieve methods for detecting primes in a general sequence of integers. The emphasis will be on developing a new, unified theory of sieves that allows one to say if the main hypotheses on the sequence, known as Type-I bounds and Type-II bounds, are sufficient to show that the sequence contains many primes. The strength of these hypotheses are governed by three parameters. In particular, we will prove, for the first time, that in a certain range of these parameters, there are sequences which satisfy the Type-I and Type-II bounds yet contain no primes. The primary goal is to determine precisely in which range of the parameters the main hypotheses imply that the sequence always contains many primes. We will also investigate in finer detail the problem of counting primes in short intervals. The PI will also continue his investigations into further understanding the concentration of divisors of integers. The primary goal is to determine precisely the measure of the concentration function of divisors of typical integers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关于正整数性质的问题几千年来一直吸引着人们,最近在计算机科学、信息安全和信号处理中得到了应用。在这个被称为数论的领域中,素数起着核心作用。基本问题围绕素数中的模式、素数之间的间隙以及特殊类型的素数是如何分布的。自20世纪初以来,筛分方法一直是我们分析这些问题的主要工具之一,但这些方法的局限性鲜为人知,发现这些局限性是该领域的一个主要开放问题。这一奖项将使PI能够继续他的工作,了解和探索筛分方法和素数的分配。这一努力的成功将有助于解开质数的许多奥秘,并对数学和信息论的许多领域产生重大影响。助学金还将用于培训和指导从事数论工作的研究生。PI将开发新的方法来探索筛法在一般整数序列中检测素数的局限性。重点将是发展一种新的、统一的筛子理论,该理论允许人们说出关于该序列的主要假设,即所谓的I型界限和II型界限,是否足以表明该序列包含许多素数。这些假设的强弱取决于三个参数。特别地,我们将第一次证明,在这些参数的某个范围内,存在满足类型I和类型II边界但不包含素数的序列。其主要目标是精确地确定主要假设所暗示的参数范围内的序列总是包含许多素数。我们还将更详细地研究在短间隔内计数素数的问题。PI还将继续他的调查,以进一步了解整数的除数的集中度。主要目标是准确地确定典型整数的除数的集中度函数的度量。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equal sums in random sets and the concentration of divisors
随机集合中的等和以及除数的集中
- DOI:10.1007/s00222-022-01177-y
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Ford, Kevin;Green, Ben;Koukoulopoulos, Dimitris
- 通讯作者:Koukoulopoulos, Dimitris
Large prime gaps and probabilistic models
大素数间隙和概率模型
- DOI:10.1007/s00222-023-01199-0
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Banks, William;Ford, Kevin;Tao, Terence
- 通讯作者:Tao, Terence
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Ford其他文献
A Problem of Ramanujan, Erdős, and Kátai on the Iterated Divisor Function
Ramanujan、Erdős 和 Kátai 关于迭代除数函数的问题
- DOI:
10.1093/imrn/rnr175 - 发表时间:
2011 - 期刊:
- 影响因子:1
- 作者:
Y. Buttkewitz;Christian Elsholtz;Kevin Ford;J. Schlage - 通讯作者:
J. Schlage
Generalized Smirnov statistics and the distribution of prime factors
广义斯米尔诺夫统计和素因数分布
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kevin Ford - 通讯作者:
Kevin Ford
Unnormalized differences between zeros of L-functions
L 函数零点之间的非标准化差异
- DOI:
10.1112/s0010437x14007659 - 发表时间:
2013 - 期刊:
- 影响因子:1.8
- 作者:
Kevin Ford;A. Zaharescu - 通讯作者:
A. Zaharescu
Dimensional lower bounds for Falconer type incidence theorems
Falconer 型关联定理的维数下界
- DOI:
10.1007/s11854-019-0056-0 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jonathan DeWitt;Kevin Ford;Eli Goldstein;Steven J. Miller;Gwyneth Moreland;E. Palsson;S. Senger - 通讯作者:
S. Senger
Common values of the arithmetic functions ϕ and σ
算术函数 phi 和 σ 的常用值
- DOI:
10.1112/blms/bdq014 - 发表时间:
2009 - 期刊:
- 影响因子:0.9
- 作者:
Kevin Ford;F. Luca;C. Pomerance - 通讯作者:
C. Pomerance
Kevin Ford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Ford', 18)}}的其他基金
Analytic and Combinatorial Number Theory
解析和组合数论
- 批准号:
1902485 - 财政年份:2019
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Number Theory at Illinois, June 5-7, 2014
数论,伊利诺伊州,2014 年 6 月 5-7 日
- 批准号:
1362769 - 财政年份:2014
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Development of enhanced gene specific technology for the isolation of proteins binding at a single locus in vivo.
开发增强型基因特异性技术,用于分离体内单个位点结合的蛋白质。
- 批准号:
BB/K013785/1 - 财政年份:2013
- 资助金额:
$ 37.29万 - 项目类别:
Research Grant
Analytic, probabilistic and combinatorial number theory
解析数论、概率数论和组合数论
- 批准号:
1201442 - 财政年份:2012
- 资助金额:
$ 37.29万 - 项目类别:
Continuing Grant
The distribution of prime numbers and products of few primes
素数的分布和少数素数的乘积
- 批准号:
0901339 - 财政年份:2009
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Theory of L-functions, prime numbers and divisors
L 函数、素数和约数理论
- 批准号:
0555367 - 财政年份:2006
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening
PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查
- 批准号:
2331502 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES: Practical Inference Algorithms to Detect Hybridization
PRIMES:检测杂交的实用推理算法
- 批准号:
2331660 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES: Enhancing Capacity for Research in Applied Mathematics at Spelman College
PRIMES:增强斯佩尔曼学院应用数学研究能力
- 批准号:
2331890 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES: Researching and Teaching Mathematics of Fairness and Equity
PRIMES:公平与公正数学的研究和教学
- 批准号:
2332232 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
- 批准号:
2331072 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
PRIMES PAIR: Partnering with AIM for Inclusive Research
PRIMES PAIR:与 AIM 合作开展包容性研究
- 批准号:
2331634 - 财政年份:2023
- 资助金额:
$ 37.29万 - 项目类别:
Standard Grant
Distance between primes
素数之间的距离
- 批准号:
572927-2022 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别:
University Undergraduate Student Research Awards
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别:
Discovery Grants Program - Individual
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 37.29万 - 项目类别: