PRIMES: Enhancing Capacity for Research in Applied Mathematics at Spelman College
PRIMES:增强斯佩尔曼学院应用数学研究能力
基本信息
- 批准号:2331890
- 负责人:
- 金额:$ 31.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to enhance research capacity in applied mathematics for undergraduates and faculty in the Department of Mathematics at Spelman College, a historically Black college for women. Through engagement with the Institute for Computational and Experimental Research in Mathematics (ICERM) semester on Numerical Partial Differential Equations, the project will foster research collaborations in numerical PDEs, expose Spelman faculty to ICERM programs, and will offer undergraduate research opportunities and curriculum development in numerical PDEs. The project’s research focus is to develop better computational techniques to solve the equations that model spinodal decomposition, which is the separation of binary mixtures into two phases. The goal is to create higher order numerical approaches using mixed-model methods and to investigate the stability properties of these methods. Additionally, the PI will explore the potential of incorporating machine learning techniques to evolve the model in time. Overall, this project combines cutting-edge research with educational and diversity focused initiatives that will improve research capacity in applied math at Spelman College and will encourage Black women to pursue graduate degrees in applied mathematics. This research project seeks to develop a higher order numerical approach for solving the Cahn-Hilliard equation, a model for spinodal decomposition in binary mixtures. The goal is to investigate the optimal splitting between the implicit and explicit components in an implicit-explicit (IMEX) Runge-Kutta method that yields an accurate and stable solution. The PI firsts extends a semi-implicit approach by Shen to an IMEX implicit midpoint rule. Then the PI will determine if the same splitting is beneficial in a third order diagonally IMEX Runge-Kutta scheme. The research also explores using a mixed-model approach for the variable mobility case that incorporates the constant mobility model. The goal is to choose the optimal splittings to produce variable mobility behavior. Furthermore, the project is incorporating machine learning techniques into the mixed model time evolution. The stability and accuracy of all the proposed methods will be thoroughly investigated. Understanding the dynamics of spinodal decomposition in binary mixtures has significant applications in materials science, chemistry, and engineering. Developing higher order numerical methods and investigating their stability contributes to the advancement of numerical techniques for simulating complex physical phenomena. Moreover, the integration of machine learning into the numerical framework opens avenues for enhancing the accuracy and efficiency of the simulations.The project is funded jointly by the Infrastructure program of the Division of Mathematical Sciences and the HBCU-Excellence in Research Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在提高斯佩尔曼学院数学系本科生和教职员工在应用数学方面的研究能力。斯佩尔曼学院是一所历史悠久的黑人女子学院。通过与计算与实验数学研究所(ICERM)在数值偏微分方程式方面的学期合作,该项目将促进数值偏微分方程的研究合作,让斯佩尔曼的教师接触ICERM项目,并将提供本科生在数值偏微分方程方面的研究机会和课程开发。该项目的研究重点是开发更好的计算技术来求解模拟调幅分解的方程,调幅分解是将二元混合物分离成两个相。目标是使用混合模型方法创建高阶数值方法,并研究这些方法的稳定性。此外,PI将探索纳入机器学习技术的潜力,以及时发展模型。总体而言,该项目将尖端研究与教育和以多样性为重点的倡议相结合,将提高斯佩尔曼学院应用数学的研究能力,并将鼓励黑人女性攻读应用数学研究生学位。这一研究项目旨在开发一种求解Cahn-Hilliard方程的高阶数值方法,Cahn-Hilliard方程是一种二元混合物的调幅分解模型。目标是研究隐式-显式(IMEX)龙格-库塔方法中隐式分量和显式分量之间的最优分裂,以产生准确和稳定的解。PI First将沈的半隐式方法推广到IMEX隐式中点规则。然后,PI将确定相同的分裂在三阶对角IMEX Runge-Kutta格式中是否有益。这项研究还探索了使用混合模型的方法来处理可变流动性的情况,其中包括恒定流动性模型。目标是选择最优的分裂来产生可变的移动行为。此外,该项目还将机器学习技术融入到混合模型时间演化中。所有提出的方法的稳定性和准确性都将得到彻底的调查。了解二元混合物的调幅分解动力学在材料科学、化学和工程中有着重要的应用。发展高阶数值方法并研究其稳定性有助于发展模拟复杂物理现象的数值技术。此外,将机器学习整合到数值框架中,为提高模拟的准确性和效率开辟了途径。该项目由数学科学部基础设施计划和HBCU-卓越研究计划联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Stephens其他文献
The Cost(s) of Open Geospatial Data
开放地理空间数据的成本
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Peter A. Johnson;R. Sieber;T. Scassa;Monica Stephens;P. Robinson - 通讯作者:
P. Robinson
Gender and the GeoWeb: divisions in the production of user-generated cartographic information
- DOI:
10.1007/s10708-013-9492-z - 发表时间:
2013-08 - 期刊:
- 影响因子:2.7
- 作者:
Monica Stephens - 通讯作者:
Monica Stephens
GIS as Media
GIS 作为媒体
- DOI:
10.1007/978-94-017-9969-0_13 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Matthew W. Wilson;Monica Stephens - 通讯作者:
Monica Stephens
A geospatial infodemic: Mapping Twitter conspiracy theories of COVID-19
- DOI:
10.1177/2043820620935683 - 发表时间:
2020-06 - 期刊:
- 影响因子:27.5
- 作者:
Monica Stephens - 通讯作者:
Monica Stephens
Monica Stephens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Stephens', 18)}}的其他基金
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123259 - 财政年份:2021
- 资助金额:
$ 31.89万 - 项目类别:
Continuing Grant
Spelman STEM Scholars (S3) Program
斯佩尔曼 STEM 学者 (S3) 计划
- 批准号:
0850069 - 财政年份:2009
- 资助金额:
$ 31.89万 - 项目类别:
Continuing Grant
相似海外基金
Planning: Machine Learning in Transportation: Enhancing STEM Education and Research Capacity at The University of Texas at El Paso
规划:交通运输中的机器学习:增强德克萨斯大学埃尔帕索分校的 STEM 教育和研究能力
- 批准号:
2332774 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Standard Grant
FTMA4 Enhancing staff mobility to build capacity in extracellular matrix ageing research and development
FTMA4 增强员工流动性以建设细胞外基质衰老研究和开发的能力
- 批准号:
BB/X01780X/1 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Training Grant
Enhancing Research capacity for Sickle Cell Disease and related NCDs across the Lifespan in Uganda. ''Enrich Project''
加强乌干达全生命周期镰状细胞病和相关非传染性疾病的研究能力。
- 批准号:
10665128 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Enhancing the Capacity of Pediatric Primary Care Providers: A Pilot Trial of Anxiety Action Plan
增强儿科初级保健提供者的能力:焦虑行动计划试点
- 批准号:
10574022 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Enhancing research capacity at the Geological Survey of Estonia to accelerate the country's transition to green energy (EGT-TWINN)
增强爱沙尼亚地质调查局的研究能力,加速该国向绿色能源的转型 (EGT-TWINN)
- 批准号:
10039270 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
EU-Funded
Modelling and dynamic assessment of integrated health and care pathways enhancing response capacity of health systems
综合卫生保健路径的建模和动态评估可增强卫生系统的应对能力
- 批准号:
10064147 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
EU-Funded
Conference: Enhancing Capacity for Research and Partnerships at Emerging Research Institutions
会议:增强新兴研究机构的研究能力和伙伴关系
- 批准号:
2350104 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Standard Grant
Enhancing Early Childhood Educators' Reflective Practice and Content Knowledge to Increase Children's Capacity for Science Talk
加强幼儿教育工作者的反思实践和内容知识,以提高儿童的科学演讲能力
- 批准号:
2300676 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Standard Grant
Enhancing capacity in faith-based organizations to implement and sustain multilevel innovations to improve physical activity
增强信仰组织实施和维持多层次创新以改善身体活动的能力
- 批准号:
10392298 - 财政年份:2022
- 资助金额:
$ 31.89万 - 项目类别:
Enhancing the Safety, Efficiency, and Research Capacity of the University of Pittsburgh Regional Biocontainment Laboratory to Study Virus Families of Greatest Pandemic Concern
增强匹兹堡大学地区生物防护实验室的安全性、效率和研究能力,以研究最受流行病关注的病毒家族
- 批准号:
10611748 - 财政年份:2022
- 资助金额:
$ 31.89万 - 项目类别: