XTRIPODS: Advancing Quantum Data Science Research and Education: Resilient Quantum Learning in NISQ era
XTRIPODS:推进量子数据科学研究和教育:NISQ 时代的弹性量子学习
基本信息
- 批准号:2343535
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data science-based approaches have empowered popular technologies, including deep learning and large language models, leading to significant advancements in artificial intelligence. However, in the post-Moore’s Law era, the limitations of semiconductor fabrication, combined with the continuous growth of data sizes, have hindered further progress. Simultaneously, the rapid evolution of quantum computing has ushered in a new era, holding immense potential. This has sparked interest in quantum-based data science and learning, with the anticipation that certain systems could provide a quantum speedup. This project will harness the multi-disciplinary expertise from our NSF TRIPODS collaboration to develop noise-aware and resilient quantum learning systems. This project bridges the gap between research communities in traditional data science and quantum computing, thereby introducing classical data science researchers to the opportunities in quantum data science (QuanDS). Furthermore, this project will contribute to developing a skilled workforce, well-versed in cutting-edge AI and equipped to navigate the unique challenges of this emerging field in QuanDS.This project develops a quantum learning system using a data-driven approach that integrates static-dynamic combined circuit analysis. This method combines static metrics with the inherent dynamic noises of quantum systems by developing a set of noise-involved evaluation metrics, such as circuit sensitivity indicator. A topology-aware resilient circuit transpilation mechanism tailored to quantum learning will then be developed to optimize the execution on noisy intermediate-scale quantum (NISQ) era hardware under quantum noise. Additionally, the project provides a holistic analysis of the vulnerability in distributed quantum learning by reasoning the strategic behavior of the attacker to quantum computing nodes, and devises resilient learning countermeasures in the distributed quantum-classical learning paradigm. Furthermore, it develops educational modules in quantum control systems combined with resilient quantum learning techniques. The comprehensive outreach activities will be developed to integrate QuanDS research and education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于数据科学的方法为包括深度学习和大型语言模型在内的流行技术提供了支持,从而使人工智能取得了重大进展。然而,在后摩尔定律时代,半导体制造的局限性,加上数据规模的不断增长,阻碍了进一步的发展。与此同时,量子计算的快速发展开创了一个新时代,拥有巨大的潜力。这引发了人们对基于量子的数据科学和学习的兴趣,人们期待某些系统可以提供量子加速。该项目将利用我们与NSF TRIPODS合作的多学科专业知识来开发噪声感知和弹性量子学习系统。该项目弥合了传统数据科学和量子计算研究社区之间的差距,从而将经典数据科学研究人员引入量子数据科学(QuanDS)的机会。此外,该项目将有助于培养熟练的劳动力,精通尖端人工智能,并有能力在QuanDS中应对这一新兴领域的独特挑战。该项目使用数据驱动的方法开发量子学习系统,该方法集成了静态-动态组合电路分析。该方法将量子系统固有的动态噪声与静态噪声相结合,提出了一套包含噪声的评价指标,如电路灵敏度指标。然后,将开发一种针对量子学习的拓扑感知弹性电路转译机制,以优化量子噪声下噪声中间尺度量子(NISQ)时代硬件的执行。此外,该项目通过推理攻击者对量子计算节点的策略行为,对分布式量子学习中的漏洞进行了全面分析,并在分布式量子经典学习范式中设计了弹性学习对策。此外,它还开发了量子控制系统中的教育模块,并结合了弹性量子学习技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Mao其他文献
ハンチントン病における新規ネクローシスTRIADの分子病態
亨廷顿病中新型坏死 TRIAD 的分子病理学
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
藤田 慶大;Ying Mao;陳 西貴;山西 恵美子;本間 秀典;田川 一彦;岡澤 均 - 通讯作者:
岡澤 均
Refining the Anatomy of Percutaneous Trigeminal Rhizotomy: A Cadaveric, Radiological, and Surgical Study
完善经皮三叉神经根切断术的解剖结构:尸体、放射学和外科研究
- DOI:
10.1227/ons.0000000000000590 - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Yuanzhi Xu;T. E. El Ahmadieh;M. Nuñez;Qi Zhang;Yaohua Liu;J. Fernandez;A. Cohen;Ying Mao - 通讯作者:
Ying Mao
Reduced Glomerular Epithelial Protein 1 Expression and Podocyte Injury in Immunoglobulin a Nephropathy
免疫球蛋白 a 肾病中肾小球上皮蛋白 1 表达减少和足细胞损伤
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:1.6
- 作者:
Tian;Ping Wang;Ying Mao;Jin;Hua Chen - 通讯作者:
Hua Chen
Application effect of prehospital-hospital integrated emergency nursing in patients with acute cerebral infarction.
院前院内一体化急救护理在急性脑梗死患者中的应用效果
- DOI:
10.1080/02648725.2023.2210954 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yujuan Chen;Ying Mao;Lihui Chen - 通讯作者:
Lihui Chen
Efficiently and Conveniently Heparin/ PEG-PCL Core-shell Microcarriers Fabrication and Optimization via Coaxial-Electrospraying
- DOI:
- 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Ying Mao - 通讯作者:
Ying Mao
Ying Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Mao', 18)}}的其他基金
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
- 批准号:
2329020 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
- 批准号:
2301884 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
NSF Engines Development Award: Advancing quantum technologies in the Midwest (IL, WI)
NSF 引擎开发奖:推进中西部(伊利诺伊州、威斯康星州)的量子技术
- 批准号:
2315739 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
- 批准号:
2302817 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Engines Development Award: Advancing quantum technologies (CT)
NSF 发动机开发奖:推进量子技术 (CT)
- 批准号:
2302908 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
- 批准号:
2302816 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Advancing Quantum Sensing and Metrology Education: Concepts, Curricula, and Research on Student Learning
推进量子传感和计量教育:概念、课程和学生学习研究
- 批准号:
2315691 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies
ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力
- 批准号:
2328822 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Engines Development Award: Advancing quantum and supporting technologies in the Northern Intermountain States (MT, WY, ID)
NSF 发动机开发奖:在北部山间州(蒙大拿州、怀俄明州、爱达荷州)推进量子和支持技术
- 批准号:
2304014 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
- 批准号:
2302818 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Advancing the Many-body Band Inversion Paradigm for Correlated Quantum Materials
职业:推进相关量子材料的多体能带反演范式
- 批准号:
2144352 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Advancing the practical implementation of quantum error correction with fault-tolerant syndrome extraction
通过容错综合症提取推进量子纠错的实际实施
- 批准号:
10032566 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D














{{item.name}}会员




