Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
基本信息
- 批准号:2302696
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:Power electronic devices are at the heart of power and energy systems that are widely used in electric/hybrid vehicles, data centers, power grids, solar panels, and wind turbines. It is estimated that 80% of global electricity will be processed by power devices by 2030. Compared with the incumbent silicon devices, vertical gallium nitride (GaN) power devices are broadly regarded as key enablers for the next-generation efficient, compact, and robust power electronics, with the potential to transform future power electronics technologies. Despite the high potential, the performance of vertical GaN power devices still falls far behind their theoretical limit due to premature device degradation and failure. The fundamental knowledge on the device reliability and failure mechanisms of vertical GaN power devices is still largely missing, which significantly hinders the further development and adoption of GaN power electronics. This project aims to advance the fundamental understanding on the reliability and failure of vertical GaN power devices, and use a material-device co-design approach to push their performance to GaN limit. Successful outcomes of the project will lead to transformative understanding and new development of vertical GaN power devices at physics, materials, and devices levels. And fundamental new knowledge will be achieved using an interdisciplinary approach involving materials growth and characterization, device design and fabrication, and reliability testing and failure analysis. The intellectual merits of the project include new understandings on the degradation and failure mechanisms of vertical GaN power devices, the development of new material and device characterization toolsets for the GaN device’s reliability analysis, as well as new insights into the design and fabrication of vertical GaN power devices to realize their full potential. To achieve broader impacts, the project will provide workforce training for underrepresented groups with interdisciplinary research skills in engineering, materials, and physics, integrate educational activities for K-12 students and teachers, and promote STEM undergraduate research in semiconductors and power electronics.Technical Abstract:Vertical gallium nitride (GaN) power devices are ideal candidates for high-voltage high-power electronic applications due to their advantages, such as lower materials defect density, immunity to surface-related degradation and reliability concerns, and avalanche capability, as well as smaller chip areas and better heat dissipation. Despite these advantages, the current vertical GaN power devices still suffer from premature failure, and their device performance is far below the GaN material limit. There are very limited research efforts on the reliability study and failure analysis of vertical GaN devices, and the fundamental understandings are still missing. This project will directly address this research and scientific gap and obtain fundamental knowledge on the failure modes and mechanisms of vertical GaN power devices. An interdisciplinary approach will be used to achieve material-device co-design, including materials characterizations at failure sites, defects engineering, reliability study under current surge events, and theoretical modeling. This project will advance the fundamental understanding on the failure mechanisms of vertical GaN power devices, accelerate the device development of high-power robust GaN devices, and unlock the full potential of the GaN materials for efficient power conversions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:电力电子设备是电力和能源系统的核心,这些设备广泛用于电动/混合动力汽车,数据中心,电网,太阳能电池板和风力涡轮机。据估计,到2030年,电力设备将处理80%的全球电力。与现有的硅设备相比,氮化壳(GAN)电源设备广泛地认为是下一代高效,紧凑和强大的电力电子设备的关键推动力,并具有改变未来电力电子技术的潜力。尽管潜力很高,但由于设备定义过早和故障,垂直GAN电源设备的性能仍然远远落后于其理论上限。关于垂直GAN功率设备的设备可靠性和故障机制的基本知识仍在很大程度上缺失,这极大地阻碍了GAN Power Electronics的进一步发展和采用。该项目旨在促进对垂直GAN功率设备的可靠性和失败的基本理解,并使用材料设备共同设计的方法将其绩效推向GAN极限。该项目的成功结果将导致物理,材料和设备水平上垂直GAN电源设备的变革性理解和新开发。基本的新知识将使用涉及材料增长和表征,设备设计和制造以及可靠性测试和失败分析的跨学科方法来实现。该项目的智力优点包括对垂直GAN功率设备的降解和故障机制的新理解,为GAN设备的可靠性分析的新材料和设备表征工具集的开发以及对垂直GAN Power设备设计和制造的新见解,以实现其全部潜力。为了实现更广泛的影响,该项目将为代表性不足的群体提供跨学科研究技能,在工程,材料和物理学方面的研究技能,为K-12学生和老师的综合教育活动,并在Semiconductors和Power Electronics中促进STEM本科研究。优点,例如较低的材料缺陷密度,与表面相关的降解和可靠性问题的免疫组织化学以及雪崩能力以及较小的芯片区域以及较小的芯片区域以及更好的散热。尽管有这些优势,但当前的垂直gan电源设备仍会遭受过早故障的损失,并且它们的设备性能远低于GAN物料限制。关于垂直GAN设备的可靠性研究和失败分析的研究工作非常有限,基本理解仍然缺失。该项目将直接解决这一研究和科学差距,并获得有关垂直GAN功率设备的故障模式和机制的基本知识。将使用跨学科的方法来实现材料设备共同设计,包括故障站点的材料特征,缺陷工程,在当前的激增事件下的可靠性研究和理论建模。该项目将提高人们对垂直GAN电源设备的故障机制的基本了解,加速高功率强大的GAN设备的设备开发,并解锁GAN材料对有效的电力转换的全部潜力。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的criperia criperia criperia criperia criperia criptia revaluation the Priews通过评估来获得珍贵的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Houqiang Fu其他文献
Experimental demonstration of non-line-of-sight visible light communication with different reflecting materials using a GaN-based micro-LED and modified IEEE 802.11ac
使用基于 GaN 的 micro-LED 和改进的 IEEE 802.11ac 与不同反射材料进行非视距可见光通信的实验演示
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Zhijian Lu;Pengfei Tian;Houqiang Fu;Jossue Montes;Xuanqi Huang;Hong Chen;Xiaodong Zhang;Xiaoyan Liu;Ran Liu;Lirong Zheng;Xiaolin Zhou;Erdan Gu;Yi Liu;Yuji Zhao - 通讯作者:
Yuji Zhao
The Mechanism of Performance Variations in MoS$_{text{2}}$ Vertical Schottky Metal–Semiconductor Photodiode Based on Thermionic Emission Theory
基于热电子发射理论的MoS$_{text{2}}$立式肖特基金属半导体光电二极管性能变化机理
- DOI:
10.1109/ted.2022.3202149 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Xisai Zhang;Xinpei Duan;Wencheng Niu;Xingqiang Liu;Xuming Zou;Hao Huang;Dinusha Herath Mudiyanselage;Houqiang Fu;Bei Jiang;Guoxia Liu;Zhenyu Yang - 通讯作者:
Zhenyu Yang
Band alignment of ultrawide bandgap ε-Ga<sub>2</sub>O<sub>3</sub>/h-BCN heterojunction epitaxially grown by metalorganic chemical vapor deposition
- DOI:
10.1016/j.apsusc.2022.152502 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Xin Zhou;Li Zhang;Xiaodong Zhang;Yongjian Ma;Xing Wei;Tiwei Chen;Wenbo Tang;Kun Xu;Zhongming Zeng;Xinping Zhang;Houqiang Fu;BaoShun Zhang - 通讯作者:
BaoShun Zhang
Role of p-GaN layer thickness in the degradation of InGaN-GaN MQW solar cells under 405 nm laser excitation
- DOI:
10.1016/j.microrel.2022.114727 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Marco Nicoletto;Alessandro Caria;Carlo De Santi;Matteo Buffolo;Xuanqi Huang;Houqiang Fu;Hong Chen;Yuji Zhao;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini - 通讯作者:
Matteo Meneghini
Houqiang Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Houqiang Fu', 18)}}的其他基金
CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics
职业:用于电力电子器件的超宽带隙氮化铝 FET
- 批准号:
2338604 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
- 批准号:
2210153 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
从其他企业的失败学习:跨国公司东道国退出多样性和外国直接投资区位选择
- 批准号:72272034
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
失败学习形成机制及其对后续创新绩效的影响研究:基于复杂产品创新失败
- 批准号:71902045
- 批准年份:2019
- 资助金额:18 万元
- 项目类别:青年科学基金项目
失败学习形成机制及其对后续创新绩效的影响研究:基于复杂产品创新失败
- 批准号:71902045
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
个体特征和环境因素对个体从成功和失败经验中学习影响的研究
- 批准号:71772099
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
果蝇类负面情绪及其对学习记忆的影响
- 批准号:91632112
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:重大研究计划
相似海外基金
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Enhancing gnomAD Sustainability: Implementing Site Reliability Engineering Principles for Genomic Data Infrastructure
增强 gnomAD 可持续性:实施基因组数据基础设施站点可靠性工程原则
- 批准号:
10838180 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
- 批准号:
2210153 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Hyperpolarized Carbon-13 Metabolic MRI of the Human Heart
人类心脏的超极化碳 13 代谢 MRI
- 批准号:
10569034 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Validating establishment of functional safety in skin interface with deeply porous transcutaneous pylon for direct skeletal attachment of limb prostheses
验证用于肢体假肢直接骨骼附着的深孔经皮塔皮肤界面功能安全性的建立
- 批准号:
10324937 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: