CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics

职业:用于电力电子器件的超宽带隙氮化铝 FET

基本信息

  • 批准号:
    2338604
  • 负责人:
  • 金额:
    $ 52.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Power electronics are increasingly becoming key enablers for transportation electrification, renewable energy, grid modernization, and carbon emission reduction for a green, sustainable economy. The state-of-the-art silicon power devices are approaching silicon material limits, which urges the exploration of new semiconductors for next-generation power electronics. Ultrawide bandgap (UWBG) semiconductors possess unique material properties for future power electronics that promise far superior performance beyond the incumbent silicon and maturing gallium nitride and silicon carbide power technologies. Aluminum nitride (AlN) exhibits the largest bandgap and critical electric field in the UWBG semiconductor family with excellent thermal conductivity, which can enable power electronics with higher efficiency, higher voltage, high frequency, and higher operation temperature. However, the performance of current AlN power devices lags far behind AlN material limits due to poor fundamental understanding of AlN epitaxy, surfaces, contacts, and devices. This project aims to significantly advance the development of UWBG AlN-based field-effect transistors (FETs) for high-performance power electronics through innovative integrated material and device engineering. Critical material and device obstacles for AlN power FETs will be tackled, and the project will lead to new fundamental insights into AlN and its epitaxial science, surface, contacts, and power devices. This research is promising to unlock the full potential of UWBG AlN for high-efficiency, high-voltage, fast, compact, and robust power electronics and transformative for other UWBG semiconductors’ fundamental research and device development. The successful outcome of the UWBG AlN power technology can increase energy efficiency and security, reduce fossil fuel consumption, improve resiliency and efficiency of the electric grid, enhance penetration of electric vehicles and renewables, and significantly contribute to carbon neutral and net-zero carbon goals. In addition, this project will offer various education opportunities for undergraduate, graduate, and K-12 students on power semiconductors and enhance student diversity in STEM fields, including mentoring undergraduates in research, developing new semiconductor curriculum, organizing outreach and intern programs for K-12 students, broadening the participation of underrepresented groups in STEM, and collaborating with semiconductor industry for workforce training.The overarching goal of this project is to develop high-performance UWBG AlN power FETs through holistic material and device engineering for next-generation high-efficiency, high-voltage, high-temperature power electronics. Five research thrusts are proposed to address crucial material and device impediments toward AlN power FETs with performance close to AlN limits. AlN epitaxy science and engineering in Thrust 1 will obtain a fundamental understanding of growth dynamics and doping mechanisms of AlN homoepitaxy via metalorganic chemical vapor deposition (MOCVD) and shed light on defects, doping, and carrier transport in homoepitaxial AlN. AlN surface science and engineering in Thrust 2 will significantly enrich the surface science and knowledge of AlN on different crystal orientations using comprehensive material and electrical characterizations and develop effective surface engineering to mitigate adverse surface effects. AlN contact study and optimization in Thrust 3 will enhance and optimize AlN Schottky and ohmic contacts essential in AlN FETs via novel regrowth and processing technologies. AlN power device engineering in Thrust 4 will implement innovative electric field management approaches to prevent premature device failure and develop normally-off AlN power FETs with the aid of device modeling and material innovations from other thrusts. Thrust 5 will realize monolithically integrated AlN power electronics with power FETs, drivers, and control circuits for higher efficiency, higher power density, faster switching, smaller form factor, and higher robustness, which is the first of its kind.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力电子正日益成为交通电气化、可再生能源、电网现代化和减少碳排放的关键推动者,以实现绿色、可持续的经济。先进的硅功率器件正在接近硅材料的极限,这促使开发用于下一代功率电子的新型半导体。超宽带隙(UWBG)半导体具有独特的材料特性,可用于未来的电力电子产品,其性能远远超过现有的硅和成熟的氮化镓和碳化硅功率技术。氮化铝(AlN)在UWBG半导体家族中具有最大的带隙和临界电场,具有优异的导热性,可以使电力电子器件具有更高的效率、更高的电压、高频和更高的工作温度。然而,由于对AlN外延、表面、接触和器件缺乏基本的了解,目前AlN功率器件的性能远远落后于AlN材料的极限。该项目旨在通过创新的集成材料和器件工程,显著推进用于高性能电力电子的UWBG aln基场效应晶体管(fet)的发展。AlN功率场效应管的关键材料和器件障碍将得到解决,该项目将为AlN及其外延科学、表面、接触和功率器件带来新的基本见解。这项研究有望释放UWBG AlN在高效、高压、快速、紧凑和强大的电力电子方面的全部潜力,并为其他UWBG半导体的基础研究和设备开发带来变革。UWBG AlN电力技术的成功成果可以提高能源效率和安全性,减少化石燃料消耗,提高电网的弹性和效率,提高电动汽车和可再生能源的渗透率,并为实现碳中和和净零碳目标做出重大贡献。此外,该项目将为本科生、研究生和K-12学生提供功率半导体方面的各种教育机会,并增强STEM领域学生的多样性,包括指导本科生进行研究、开发新的半导体课程、为K-12学生组织外展和实习项目、扩大STEM中代表性不足群体的参与,以及与半导体行业合作进行劳动力培训。该项目的总体目标是通过整体材料和器件工程开发高性能UWBG AlN功率场效应管,用于下一代高效、高压、高温电力电子产品。提出了五个研究重点,以解决关键材料和器件障碍,使AlN功率场效应管的性能接近AlN极限。推力1的AlN外延科学与工程将通过金属有机化学气相沉积(MOCVD)获得AlN同外延生长动力学和掺杂机制的基本理解,并阐明AlN同外延中的缺陷、掺杂和载流子输运。Thrust 2中的AlN表面科学与工程将通过综合材料和电特性来显著丰富不同晶体取向AlN的表面科学和知识,并开发有效的表面工程来减轻不利的表面效应。推力3中的AlN接触研究和优化将通过新的再生和加工技术增强和优化AlN fet中必不可少的AlN肖特基和欧姆接触。推力4中的AlN功率器件工程将实施创新的电场管理方法,以防止器件过早失效,并借助其他推力的器件建模和材料创新开发正常关闭的AlN功率场效应管。Thrust 5将实现单片集成AlN功率电子器件,包括功率场效应管、驱动器和控制电路,以实现更高的效率、更高的功率密度、更快的开关、更小的外形尺寸和更高的稳健性,这是同类产品中的第一个。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Houqiang Fu其他文献

Experimental demonstration of non-line-of-sight visible light communication with different reflecting materials using a GaN-based micro-LED and modified IEEE 802.11ac
使用基于 GaN 的 micro-LED 和改进的 IEEE 802.11ac 与不同反射材料进行非视距可见光通信的实验演示
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhijian Lu;Pengfei Tian;Houqiang Fu;Jossue Montes;Xuanqi Huang;Hong Chen;Xiaodong Zhang;Xiaoyan Liu;Ran Liu;Lirong Zheng;Xiaolin Zhou;Erdan Gu;Yi Liu;Yuji Zhao
  • 通讯作者:
    Yuji Zhao
Band alignment of ultrawide bandgap ε-Gasub2/subOsub3/sub/h-BCN heterojunction epitaxially grown by metalorganic chemical vapor deposition
通过金属有机化学气相沉积外延生长的超宽带隙ε-Ga₂O₃/h-BCN 异质结的能带排列
  • DOI:
    10.1016/j.apsusc.2022.152502
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Xin Zhou;Li Zhang;Xiaodong Zhang;Yongjian Ma;Xing Wei;Tiwei Chen;Wenbo Tang;Kun Xu;Zhongming Zeng;Xinping Zhang;Houqiang Fu;BaoShun Zhang
  • 通讯作者:
    BaoShun Zhang
The Mechanism of Performance Variations in MoS$_{text{2}}$ Vertical Schottky Metal–Semiconductor Photodiode Based on Thermionic Emission Theory
基于热电子发射理论的MoS$_{text{2}}$立式肖特基金属半导体光电二极管性能变化机理
  • DOI:
    10.1109/ted.2022.3202149
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xisai Zhang;Xinpei Duan;Wencheng Niu;Xingqiang Liu;Xuming Zou;Hao Huang;Dinusha Herath Mudiyanselage;Houqiang Fu;Bei Jiang;Guoxia Liu;Zhenyu Yang
  • 通讯作者:
    Zhenyu Yang
Band alignment of ultrawide bandgap ε-Ga<sub>2</sub>O<sub>3</sub>/h-BCN heterojunction epitaxially grown by metalorganic chemical vapor deposition
  • DOI:
    10.1016/j.apsusc.2022.152502
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xin Zhou;Li Zhang;Xiaodong Zhang;Yongjian Ma;Xing Wei;Tiwei Chen;Wenbo Tang;Kun Xu;Zhongming Zeng;Xinping Zhang;Houqiang Fu;BaoShun Zhang
  • 通讯作者:
    BaoShun Zhang
Role of p-GaN layer thickness in the degradation of InGaN-GaN MQW solar cells under 405 nm laser excitation
  • DOI:
    10.1016/j.microrel.2022.114727
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marco Nicoletto;Alessandro Caria;Carlo De Santi;Matteo Buffolo;Xuanqi Huang;Houqiang Fu;Hong Chen;Yuji Zhao;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini
  • 通讯作者:
    Matteo Meneghini

Houqiang Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Houqiang Fu', 18)}}的其他基金

Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2210153
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
Reliability Study and Failure Analysis of Wide Bandgap GaN Vertical Power Devices: From Materials to Devices
宽带隙GaN垂直功率器件的可靠性研究和失效分析:从材料到器件
  • 批准号:
    2302696
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant

相似海外基金

Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Research Grant
Development of ultrawide bandgap deep UV photodetectors
超宽带隙深紫外光电探测器的研制
  • 批准号:
    2902113
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
  • 批准号:
    EP/X035360/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Research Grant
Triple Halide Ultrawide Bandgap Metal Halide Perovskites
三卤化物超宽禁带金属卤化物钙钛矿
  • 批准号:
    2245435
  • 财政年份:
    2023
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Continuing Grant
Evaluation of Ultrawide Bandgap semiconductors for high performance electronics
用于高性能电子产品的超宽带隙半导体评估
  • 批准号:
    2749287
  • 财政年份:
    2022
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
Creation of ultrawide-bandgap-semiconductor exciton-engineering using deep-ultraviolet time and spatially resolved spectroscopies under extreme environments
在极端环境下利用深紫外时间和空间分辨光谱创建超宽带隙半导体激子工程
  • 批准号:
    19H02615
  • 财政年份:
    2019
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hydrogen in the Ultrawide Bandgap Semiconductor beta-Ga203
超宽带隙半导体 beta-Ga2O3 中的氢
  • 批准号:
    1901563
  • 财政年份:
    2019
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
Ultrawide bandgap AlGaN ionizing radiation detectors
超宽带隙 AlGaN 电离辐射探测器
  • 批准号:
    1810116
  • 财政年份:
    2018
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
Ultrawide Bandgap Gallium Oxide: Fundamental Understanding From Materials Synthesis to Devices
超宽禁带氧化镓:从材料合成到器件的基本理解
  • 批准号:
    1708593
  • 财政年份:
    2017
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
Ultrawide Bandgap Gallium Oxide: Fundamental Understanding From Materials Synthesis to Devices
超宽禁带氧化镓:从材料合成到器件的基本理解
  • 批准号:
    1755479
  • 财政年份:
    2017
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了