Probing topological effects in multiterminal Josephson junction devices

探测多端约瑟夫森结器件的拓扑效应

基本信息

  • 批准号:
    2303536
  • 负责人:
  • 金额:
    $ 51.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Non-technical AbstractThe sorting of materials into different classes such as solids, liquids and gases helps to clarify our understanding of the properties of these materials and consequently enhances our ability to use them in technologically relevant products. Recently, there has been a major shift in the way materials in condensed matter physics are classified: the properties of many materials can now be understood in terms of their topological classification. Topology is a fundamental characteristic of objects and materials. Two seemingly disparate objects may belong to the same topological class: a donut and a coffee cup may seem to be entirely different objects, but both have a single hole, and hence are topologically similar. Many groundbreaking scientific discoveries of the past century such as the quantum Hall effect have now been reinterpreted in terms of the topological properties of their constituent materials, and in doing so, new insights have been gained. Designing materials and devices with specific topological properties also has potential technological advantages: for example, quantum computers based on topological qubits may be especially resistant to errors due to quantum decoherence. However, synthesizing materials and devices with specific topological properties has proved messy and difficult. This project explores a new way to develop devices with topologically important characteristics using superconducting hybrid devices, devices in which a superconductor is placed in contact with a material like gold or graphene. The properties of such devices mimic those of real crystals, and by appropriate design, analogs of topologically interesting crystals can potentially be fabricated, enabling the study of topologically distinct systems. The devices themselves are fabricated using sophisticated nanolithography techniques and measured at temperatures a few millidegrees above absolute zero. The underlying physics and experimental techniques used in this proposal are applicable to a wide range of scientific research, ensuring that the students engaged in this project will be well trained for future careers in either academia or industry. Technical abstractMaterials with topologically non-trivial band structure are being studied intensively at the moment due to their potential applications in a number of areas, including in topological quantum computation. The focus of this project is to create analogs of topologically non-trivial crystals using superconducting hybrid devices, or devices in which superconductors are placed in contact with a normal material such as gold or graphene. The energy levels of quasiparticles in a normal metal in contact with two superconductors depend on the phase difference between the superconductors in much the same way as the energy levels of electrons in a crystal depend on the crystal momentum. With more than two superconductors, analogs of higher dimensional crystals can be fabricated. The goal of this effort is to search for signatures of non-trivial topology in specifically designed devices using electrical transport measurements at millikelvin temperatures, with the devices being fabricated by sophisticated nanolithography techniques. In addition to furthering our understanding of topological systems, the knowledge and understanding gained in this project about the nature of the superconducting proximity effect, particularly in the ballistic devices, will improve the understanding of superconducting correlations in proximity effect devices targeted to topological quantum computing. The nanolithography and low temperature experimental techniques required are similar to the techniques needed in emerging fields in quantum information science, ensuring that students involved in the project are well trained in skills required for the quantum workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将材料分类为不同的类别,如固体、液体和气体,有助于澄清我们对这些材料性质的理解,从而提高我们在技术相关产品中使用它们的能力。 最近,凝聚态物理学中的材料分类方式发生了重大转变:许多材料的性质现在可以根据它们的拓扑分类来理解。 拓扑是物体和材料的基本特征。 两个看起来完全不同的物体可能属于同一个拓扑类:一个甜甜圈和一个咖啡杯可能看起来是完全不同的物体,但两者都有一个洞,因此在拓扑上是相似的。 过去世纪的许多突破性科学发现,如量子霍尔效应,现在已经根据其组成材料的拓扑性质进行了重新解释,并在此过程中获得了新的见解。 设计具有特定拓扑特性的材料和设备也具有潜在的技术优势:例如,基于拓扑量子位的量子计算机可能特别抵抗由于量子退相干引起的错误。 然而,合成具有特定拓扑性质的材料和器件已被证明是混乱和困难的。 该项目探索了一种新的方法,使用超导混合器件开发具有拓扑重要特征的器件,其中超导体与金或石墨烯等材料接触。 这种装置的性质模仿那些真实的晶体,并通过适当的设计,类似物的拓扑感兴趣的晶体可以潜在地制造,使拓扑不同的系统的研究。 这些设备本身是使用复杂的纳米光刻技术制造的,并在绝对零度以上几毫度的温度下测量。 本提案中使用的基本物理和实验技术适用于广泛的科学研究,确保参与该项目的学生将在学术界或工业界的未来职业生涯中得到良好的培训。 具有拓扑非平凡能带结构的材料由于其在包括拓扑量子计算在内的许多领域中的潜在应用,目前正被广泛研究。 该项目的重点是使用超导混合设备或超导体与金或石墨烯等普通材料接触的设备来创建拓扑非平凡晶体的类似物。 与两个超导体接触的正常金属中准粒子的能级取决于超导体之间的相位差,就像晶体中电子的能级取决于晶体动量一样。 使用两个以上的超导体,可以制造更高维度晶体的类似物。 这项工作的目标是寻找签名的非平凡的拓扑结构,在专门设计的设备,在毫开尔文温度下使用电输运测量,与设备制造的复杂的纳米光刻技术。 除了促进我们对拓扑系统的理解之外,在这个项目中获得的关于超导邻近效应的性质的知识和理解,特别是在弹道装置中,将提高对针对拓扑量子计算的邻近效应装置中超导相关性的理解。 所需的纳米光刻和低温实验技术类似于量子信息科学新兴领域所需的技术,确保参与该项目的学生在量子劳动力所需的技能方面得到良好的培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkat Chandrasekhar其他文献

Intrinsic magnetism in KTaO3 heterostructures
KTaO3 异质结构的固有磁性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4
  • 作者:
    P. Krantz;Alexander C. Tyner;Pallab Goswami;Venkat Chandrasekhar
  • 通讯作者:
    Venkat Chandrasekhar
Thermopower of Mesoscopic Normal-metal/Superconductor Heterostructures
  • DOI:
    10.1023/a:1004687210895
  • 发表时间:
    2000-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Jonghwa Eom;Chen-Jung Chien;Venkat Chandrasekhar
  • 通讯作者:
    Venkat Chandrasekhar

Venkat Chandrasekhar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venkat Chandrasekhar', 18)}}的其他基金

Quantum Coherent Phenomena in Superconducting Heterostructures
超导异质结构中的量子相干现象
  • 批准号:
    1006445
  • 财政年份:
    2010
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
MRI-R2: Development of Instrumentation for Nanoscale Spatial and Time Resolved Microwave Studies at Variable Temperatures and Magnetic Fields
MRI-R2:开发用于可变温度和磁场下纳米级空间和时间分辨微波研究的仪器
  • 批准号:
    0960120
  • 财政年份:
    2010
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Standard Grant
Coherent Thermal and Electrical Transport in Mesoscopic Structures
介观结构中的相干热电传输
  • 批准号:
    0604601
  • 财政年份:
    2006
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
Proximity-Coupled Normal Metals and Ferromagnets
邻近耦合普通金属和铁磁体
  • 批准号:
    0201530
  • 财政年份:
    2002
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
Local Spectroscopy of Ferromagnetic/Superconductor Nanostructures
铁磁/超导体纳米结构的局部光谱学
  • 批准号:
    0139936
  • 财政年份:
    2002
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Standard Grant
Transport and Magnetic Properties of NS Structures
NS 结构的输运和磁性
  • 批准号:
    9801982
  • 财政年份:
    1998
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
Single Electron Charging Effects in Insulating and Semiconducting Microstructures
绝缘和半导体微结构中的单电子充电效应
  • 批准号:
    9313726
  • 财政年份:
    1993
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9357506
  • 财政年份:
    1993
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

Orbifold Gromov-Witten理论研究
  • 批准号:
    11171174
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploring topological and quantum effects in ferromagnetic Weyl semimetals for spintronic devices
探索用于自旋电子器件的铁磁外尔半金属的拓扑和量子效应
  • 批准号:
    22KF0035
  • 财政年份:
    2023
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of Magneto-Optical Phenomena in Topological Magnets due to Magneto-Electric Effects
磁电效应拓扑磁体磁光现象的研究
  • 批准号:
    22H01171
  • 财政年份:
    2022
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
  • 批准号:
    2143177
  • 财政年份:
    2022
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Continuing Grant
Study of spin dynamics in topological materials using ultrafast magneto-optical effects
利用超快磁光效应研究拓扑材料中的自旋动力学
  • 批准号:
    22H01151
  • 财政年份:
    2022
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Effects of Interactions and Disorder in Topological Floquet Systems
拓扑小花系统中相互作用和无序的影响
  • 批准号:
    546848-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Using duality to investigate the effects of interactions between electrons in topological quantum materials
利用对偶性研究拓扑量子材料中电子之间相互作用的影响
  • 批准号:
    544262-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
The Effects of Interactions and Disorder in Topological Floquet Systems
拓扑小花系统中相互作用和无序的影响
  • 批准号:
    546848-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Topological effects in strongly correlated quantum systems
强相关量子系统中的拓扑效应
  • 批准号:
    2447026
  • 财政年份:
    2020
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Studentship
New Quantum Thermoelectric Effects in Topological Semimetals under High Magnetic Fields
高磁场下拓扑半金属的新量子热电效应
  • 批准号:
    20H01860
  • 财政年份:
    2020
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Using duality to investigate the effects of interactions between electrons in topological quantum materials
利用对偶性研究拓扑量子材料中电子之间相互作用的影响
  • 批准号:
    544262-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 51.04万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了