Scalable Single Photon Detection Systems

可扩展的单光子检测系统

基本信息

  • 批准号:
    2304121
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Extremely low light levels or low numbers of photons require the use of extremely sensitive optical detectors. Challenges of working with these low light levels impact many applications such as optical quantum communication, nuclear imaging, and light detection and ranging. Single photon avalanche diodes are capable of a response from only a single photon and Silicon Photomultipliers are effectively an array of single photon avalanche diodes. A novel form of these detectors, known as perimeter gated single photon avalanche diodes (PGSPAD) have been successfully demonstrated in the commercial CMOS processes which drive modern technological advances such as the cell phone. This project seeks to extend this new device into successful implementation in other technologies and to develop the full detection system. The broader significance lies in the development of models and architectures for new scalable single photon detectors which will impact basic science and influence fields such as national security, geographical studies, space exploration, and public health. The project incorporates mentoring of a diverse population of rising 12th graders, undergraduate students, and graduate students by leveraging existing training programs at the University of Tennessee. Results from this research will be disseminated through conferences and journals as well as through creation of short summary videos.The project leverages perimeter gated single photon avalanche diodes to develop scalable detection systems. The additional polysilicon gate of perimeter gated single photon avalanche diodes can adjust important device properties such as the dark count rate and the breakdown voltage. This adjustment facilitates correcting non-uniformity of detector characteristics, such as the noise, dynamic range, and photon detection probabilities, across an array of devices. This project seeks to adapt the existing PGSPAD devices to other technologies, such as silicon on insulator based technology, through fabrication of test structures to verify physics based device and optical simulations, the development of a scalable architecture based on tileable sub-modules and wireless transmission across a stacked chip structure, and integration of processing directly into the detection system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极低的光水平或低数量的光子需要使用极灵敏的光学探测器。 在这些低光水平下工作的挑战影响了许多应用,例如光量子通信、核成像以及光探测和测距。 单光子雪崩二极管能够仅对单个光子作出响应,而硅光电倍增管实际上是单光子雪崩二极管的阵列。这些探测器的一种新形式,被称为周界门控单光子雪崩二极管(PGSPAD),已成功地在商业CMOS工艺中得到证明,这推动了现代技术的进步,如手机。该项目旨在将这种新设备扩展到其他技术中的成功实施,并开发完整的检测系统。 更广泛的意义在于为新的可扩展单光子探测器开发模型和架构,这将影响基础科学并影响国家安全,地理研究,空间探索和公共卫生等领域。该项目通过利用田纳西大学现有的培训项目,为12年级学生、本科生和研究生提供指导。这项研究的结果将通过会议和期刊以及通过制作简短的摘要视频进行传播。该项目利用周边选通单光子雪崩二极管开发可扩展的检测系统。周边栅单光子雪崩二极管的附加多晶硅栅可以调节重要的器件特性,如暗计数率和击穿电压。这种调整有助于校正跨设备阵列的检测器特性(诸如噪声、动态范围和光子检测概率)的非均匀性。该项目旨在使现有的PGSPAD器件适应其他技术,例如基于绝缘体上硅的技术,通过制造测试结构来验证基于物理的器件和光学模拟,开发基于可拼接子模块的可扩展架构和跨堆叠芯片结构的无线传输,该奖项反映了NSF的法定使命,并被认为值得通过利用基金会的智力价值和更广泛的影响进行评估来支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole McFarlane其他文献

A Multimodal Lab-On-CMOS Based Biosensor System
基于 CMOS 的多模式实验室生物传感器系统
Improved Carbonization Process of Nano-Electrodes for Biosensor Systems
生物传感器系统纳米电极碳化工艺的改进
  • DOI:
    10.1109/biosensors58001.2023.10281127
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andalib Nizam;N. Lavrik;Dale Hensley;Nicole McFarlane
  • 通讯作者:
    Nicole McFarlane
Scalable Detector Design for a High-Resolution Fast-Neutron Radiography Panel
  • DOI:
    10.1007/s10921-023-00999-x
  • 发表时间:
    2023-09-21
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Christian X. Young;Chloe A. Browning;Ryan J. Thurber;Matthew R. Smalley;Michael J. Liesenfelt;Jason P. Hayward;Nicole McFarlane;Michael P. Cooper;Jeff R. Preston
  • 通讯作者:
    Jeff R. Preston
Regulation of SR-BI-mediated selective lipid uptake in Chinese hamster ovary-derived cells by protein kinase signaling pathways
  • DOI:
    10.1194/jlr.m600326-jlr200
  • 发表时间:
    2007-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yi Zhang;Ayesha M. Ahmed;Nicole McFarlane;Christina Capone;Douglas R. Boreham;Ray Truant;Suleiman A. Igdoura;Bernardo L. Trigatti
  • 通讯作者:
    Bernardo L. Trigatti
A low-power, reconfigurable, pipelined ADC for implantable bioimpedance measurement system with vertically aligned carbon nanofibers (VACNF) electrodes
  • DOI:
    10.1007/s10470-016-0805-2
  • 发表时间:
    2016-07-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Terence C. Randall;Syed Kamrul Islam;Ifana Mahbub;Nicole McFarlane;Yongchao Yu
  • 通讯作者:
    Yongchao Yu

Nicole McFarlane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole McFarlane', 18)}}的其他基金

REU Site: Research Experiences in Microelectronics and Sensor Systems
REU 网站:微电子和传感器系统的研究经验
  • 批准号:
    2150449
  • 财政年份:
    2022
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
  • 批准号:
    31601181
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
  • 批准号:
    21306143
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unlocking the potential of single-photon wide-field microscopy
释放单光子宽视场显微镜的潜力
  • 批准号:
    EP/Y022491/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
Developing single-photon super-resolution microscopy
开发单光子超分辨率显微镜
  • 批准号:
    EP/Y023137/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
SPUD: Single-Photon Unimolecular Devices
SPUD:单光子单分子器件
  • 批准号:
    EP/Y02513X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Short-wave Infrared Single Photon Detection With Linear Mode Avalanche Photodiode
使用线性模式雪崩光电二极管进行短波红外单光子检测
  • 批准号:
    EP/Y020855/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Research Grant
Pulsed electrically driven single-photon sources on diamond
金刚石上的脉冲电驱动单光子源
  • 批准号:
    527140061
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    WBP Position
Superconducting single-photon detectors for far-infrared wavelength range
用于远红外波长范围的超导单光子探测器
  • 批准号:
    23K17323
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Rapid imaging of single-photon and fluorescence lifetime in living tissue
活体组织中单光子和荧光寿命的快速成像
  • 批准号:
    2886684
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了