Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
基本信息
- 批准号:1265910
- 负责人:
- 金额:$ 23.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is aimed at investigating stability, regularity, and symmetry issues in various geometric variational problems, and at exploiting the corresponding results in the effective description of equilibrium configurations of surface tension driven physical systems. For example, the stability theory for isoperimetric-type problems recently established by the PI and his collaborators, beyond its intrinsic mathematical interest, has revealed useful in studying minimizers of classical sharp interface energies, of the Gates-Lebowitz-Penrose energy, the Ohta-Kawasaki energy and variants, and in cavitation models in Non-linear Elasticity. This research program will achieve significant improvements in the stability theory for geometric inequalities, broadening the reach of the theory to include new and challenging situations, and opening new spaces for further applications to problems of applied interest. Specific stability issues considered in this project arise in the study of minimizing clusters, Plateau's problem, and isoperimetric problems in arbitrary codimension and in Gauss space. The project will also advance the mathematical theory of capillarity problems, by addressing regularity issues related to the validity of Young's law, and by providing a quantitative description of geometric properties of equilibrium configurations. Finally, the project aims to some conclusive developments in symmetrization theory, by characterizing, from a geometric viewpoint, those situations where equality cases in symmetrization inequalities imply symmetry of minimizers. This project aims to advance the mathematical understanding of geometric variational problems. Geometric variational problems play a fundamental role in the mathematical modeling of Nature, and in particular, in our quantitative and qualitative understanding of equilibrium states of physical systems. Despite their ubiquitous interest, and the very considerable amount of work that has been devoted to their study both from mathematicians, physicists, and engineers, several questions remain unanswered, or just partially understood, due to the mathematical challenges they arise. In turn, geometric variational problems play also a pivotal role in various area of Mathematics, including Analysis, Probability Theory, and Geometry. Several important contributions to the stability theory for geometric variational problems has been obtained in recent years by the PI and his collaborators, with applications to the effective description of equilibrium states of physical systems, and with the introduction of new mathematical ideas and techniques. An important part of this project will consist in the training of graduate students on these new mathematical developments.
该项目旨在研究各种几何变分问题中的稳定性,规律性和对称性问题,并利用相应的结果有效描述表面张力驱动的物理系统的平衡构型。例如,PI和他的合作者最近建立的等周型问题的稳定性理论,超越了其固有的数学兴趣,在研究经典尖锐界面能,Gates-Lebowitz-Penrose能量,Ohta-Kawasaki能量和变体的极小化,以及非线性弹性中的空化模型中显示出有用。该研究计划将实现几何不等式的稳定性理论的显着改进,扩大理论的范围,包括新的和具有挑战性的情况,并为进一步应用于应用感兴趣的问题开辟新的空间。在这个项目中考虑的具体稳定性问题出现在研究最小化集群,高原的问题,在任意余维和高斯空间的等周问题。该项目还将通过解决与杨氏定律有效性相关的规律性问题,并通过提供平衡配置几何特性的定量描述,推进毛细作用问题的数学理论。最后,该项目旨在对称化理论的一些结论性的发展,通过表征,从几何的角度来看,这些情况下,在对称化不等式中的平等情况意味着极小的对称性。这个项目的目的是促进几何变分问题的数学理解。几何变分问题在自然界的数学建模中起着重要的作用,特别是在我们对物理系统平衡态的定量和定性理解中。尽管他们无处不在的兴趣,以及大量的工作,一直致力于他们的研究都从数学家,物理学家和工程师,一些问题仍然没有答案,或只是部分理解,由于数学的挑战,他们出现。反过来,几何变分问题在数学的各个领域,包括分析,概率论和几何中也起着举足轻重的作用。近年来,PI及其合作者对几何变分问题的稳定性理论做出了一些重要贡献,并应用于物理系统平衡态的有效描述,以及引入新的数学思想和技术。该项目的一个重要部分将包括对研究生进行这些新数学发展的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Maggi其他文献
Isoperimetric Residues and a Mesoscale Flatness Criterion for Hypersurfaces with Bounded Mean Curvature
- DOI:
10.1007/s00205-024-02039-y - 发表时间:
2024-09-19 - 期刊:
- 影响因子:2.400
- 作者:
Francesco Maggi;Michael Novack - 通讯作者:
Michael Novack
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Augello;V. Santinelli;G. Vicedomini;P. Mazzone;S. Gulletta;Francesco Maggi;Y. Mika;G. Chierchia;C. Pappone - 通讯作者:
C. Pappone
A New Approach to Counterexamples to L1 Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions
- DOI:
10.1007/s00205-004-0350-5 - 发表时间:
2004-12-03 - 期刊:
- 影响因子:2.400
- 作者:
Sergio Conti;Daniel Faraco;Francesco Maggi - 通讯作者:
Francesco Maggi
A remark on Serrin’s Theorem
- DOI:
10.1007/s00030-006-4018-8 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Nicola Fusco;Michele Gori;Francesco Maggi - 通讯作者:
Francesco Maggi
Rigidity and large volume residues in exterior isoperimetry for convex sets
凸集外等周问题中的刚性和大体积残差
- DOI:
10.1016/j.aim.2024.109833 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Nicola Fusco;Francesco Maggi;Massimiliano Morini;Michael Novack - 通讯作者:
Michael Novack
Francesco Maggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Maggi', 18)}}的其他基金
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
- 批准号:
2247544 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
- 批准号:
2000034 - 财政年份:2020
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854344 - 财政年份:2019
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
- 批准号:
1840314 - 财政年份:2019
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
- 批准号:
1565354 - 财政年份:2017
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361122 - 财政年份:2014
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
Regularity and stability results in variational problems
规律性和稳定性导致变分问题
- 批准号:
1262411 - 财政年份:2013
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
相似国自然基金
铁磁现象与超导电性的数学理论
- 批准号:10471050
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
- 批准号:
2350351 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
- 批准号:
EP/Y033078/1 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Research Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Non-regular complexity theory
非正则复杂性理论
- 批准号:
23K10976 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
- 批准号:
2404167 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2323531 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Classification, STructure, Amenability and Regularity
分类、结构、顺应性和规律性
- 批准号:
EP/X026647/1 - 财政年份:2023
- 资助金额:
$ 23.85万 - 项目类别:
Research Grant