Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling
草甘膦的电动生物降解:可行性、机制和传输模型
基本信息
- 批准号:2305141
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Glyphosate is the most widely employed herbicide in the United States and globally. Approximately, 800,000 tons of glyphosate are utilized worldwide every year. Although the impact of glyphosate (GLYP) on human health is still the subject of ongoing debate, exposure to high concentrations of GLYP has been shown to 1) adversely impact ecosystem health including toxicity to several species in aquatic ecosystems and 2) contribute to the emergence of glyphosate-resistant crops, and herbicide resistance in weed populations. GLYP may also adversely impact soil quality and fertility, either through direct mechanisms such as complexation with metal ions that are essential to plant growth in soils, or through indirect mechanisms such as adversely affecting the growth and metabolism of mycorrhizae and earthworms, which can adversely impact plant access to nutrients and water infiltration in soils. In addition, GLYP accumulates in soils with limited (bio)degradation and mineralization through natural attenuation. Given the widespread use of GLYP, its potential ecosystem toxicity, and the limitations of natural attenuation, there is a critical need for more efficient and cost-effective remediation technologies for GLYP contaminated soils. The overarching goal of this project is to explore and investigate the utilization of electrokinetic biodegradation (EK-Bio) as an effective remediation technology for GLYP contaminated soils. The proposed EK-Bio remediation technology utilizes an electric field to enhance the biodegradation of contaminants in soils. The successful completion of this project will benefit society through the generation of new fundamental knowledge, data, and modeling tools to advance the design and deployment of more efficient and cost-effective technologies for the remediation of soils contaminated with GLYP to enable its safe and sustainable use in agriculture and farming. Additional benefits to society will be achieved through student education and training including the mentoring of a post-doctoral research fellow, one graduate student, and one undergraduate student at the University of Alabama.As a potential glyphosate (GLYP) soil remediation technology, electrokinetic biodegradation (EK-Bio) has several advantages. First, EK-Bio is an in-situ technology that utilizes an electric field to enhance the biodegradation of contaminants in soils including low-permeability soils. Second, EK-Bio can enhance the degradation of recalcitrant organic contaminants by enhancing ion movement (e.g., contaminants, nutrients, and electron donors/acceptors) and/or by increasing the activity of redox enzymes to enhance GLYP biodegradation in soils. Third, EK-Bio can easily be integrated with other technologies (e.g., soil flushing) to broaden its applicability and enhance its effectiveness. In this project, the Principal Investigators (PIs) propose to evaluate the hypothesis that EK-Bio has the potential to become an effective technology for the remediation of GLYP contaminated soils. To test this hypothesis, the PIs propose to carry out an integrated experimental and modeling research program. The specific objectives of the research are to 1) characterize GLYP degradation during EK-Bio under varying environmental and operating conditions in three model and representative soils; 2) probe and unravel the chemical and biological mechanisms of GLYP degradation using advanced analytical chemistry tools and molecular biology techniques; and 3) develop and validate a nonlocal reactive-transport model to simulate GLY fate and transport during an EK-Bio process. To implement the education and training goals of this project, the PIs plan to leverage existing programs at the University of Alabama (UA) to recruit and mentor undergraduate students to work on the project research activities. In addition, the PIs propose to partner with the University of Alabama Regional In-Service Education Center to deliver two annual education activities consisting of immersive lab demonstrations for high school students and teachers selected from over 120 schools in Western Alabama including a “Scientist for Day” program (Fall Semester) and a “Honor Day” program (Spring Semester).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
草甘膦是美国乃至全球使用最广泛的除草剂。全世界每年大约使用80万吨草甘膦。尽管草甘膦(GLYP)对人类健康的影响仍是一个持续争论的主题,但暴露于高浓度的GLYP已被证明:1)对生态系统健康产生不利影响,包括对水生生态系统中的几种物种产生毒性;2)有助于抗草甘膦作物的出现,以及杂草种群的抗除草剂能力。GLYP也可能对土壤质量和肥力产生不利影响,要么通过直接机制,如与土壤中植物生长所必需的金属离子的络合作用,要么通过间接机制,如对菌根和蚯蚓的生长和代谢产生不利影响,从而对植物获取养分和土壤中水的渗透产生不利影响。此外,GLYP在土壤中积累,通过自然衰减有限的(生物)降解和矿化。鉴于GLYP的广泛使用,其潜在的生态系统毒性以及自然衰减的局限性,迫切需要更有效和更具成本效益的GLYP污染土壤修复技术。本项目的总体目标是探索和研究利用电动生物降解(EK-Bio)作为GLYP污染土壤的有效修复技术。提出的EK-Bio修复技术利用电场来增强土壤中污染物的生物降解。该项目的成功完成将通过产生新的基础知识、数据和建模工具来促进设计和部署更有效和更具成本效益的技术,以修复被GLYP污染的土壤,使其在农业和农业中安全、可持续地使用,从而造福社会。通过学生教育和培训,包括在阿拉巴马大学指导一名博士后研究员、一名研究生和一名本科生,将为社会带来额外的好处。电动生物降解(EK-Bio)技术作为一种极具潜力的草甘膦(GLYP)土壤修复技术,具有诸多优点。首先,EK-Bio是一种原位技术,利用电场来增强土壤中污染物的生物降解,包括低渗透土壤。其次,EK-Bio可以通过增强离子运动(例如污染物、营养物和电子供体/受体)和/或通过增加氧化还原酶的活性来增强土壤中GLYP的生物降解,从而增强对顽固性有机污染物的降解。第三,EK-Bio可以很容易地与其他技术(例如土壤冲洗)集成,以扩大其适用性并提高其有效性。在这个项目中,首席研究员(pi)建议评估EK-Bio有潜力成为修复GLYP污染土壤的有效技术的假设。为了验证这一假设,pi建议进行综合实验和建模研究计划。研究的具体目标是:1)在三种模型和代表性土壤中,在不同的环境和操作条件下,表征EK-Bio过程中GLYP的降解;2)利用先进的分析化学工具和分子生物学技术探索和揭示GLYP降解的化学和生物学机制;3)建立并验证了一个非局部反应-输运模型,以模拟EK-Bio过程中GLY的命运和输运。为了实现该项目的教育和培训目标,pi计划利用阿拉巴马大学(UA)现有的课程来招募和指导本科生参与项目研究活动。此外,pi还提议与阿拉巴马州大学地区在职教育中心合作,为阿拉巴马州西部120多所学校的高中生和教师提供两次年度教育活动,包括沉浸式实验室演示,包括“科学家日”项目(秋季学期)和“荣誉日”项目(春季学期)。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daqian Jiang其他文献
Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES)
- DOI:
10.1016/j.watres.2024.122844 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Adriana Riveros;Benhur K. Asefaw;Qingshi Wang;Tahir Maqbool;Youneng Tang;Daqian Jiang - 通讯作者:
Daqian Jiang
Electrokinetic remediation leads to translocation of dissolved organic matter/nutrients and oxidation of aromatics and polysaccharides
电动修复导致溶解有机物/营养物质的迁移以及芳烃和多糖的氧化
- DOI:
10.1016/j.scitotenv.2023.162703 - 发表时间:
2023-06-10 - 期刊:
- 影响因子:8.000
- 作者:
Tahir Maqbool;Daqian Jiang - 通讯作者:
Daqian Jiang
Minimizing byproduct formation in bioelectrochemical denitrification with anammox bacteria
利用厌氧氨氧化细菌在生物电化学反硝化过程中使副产物形成最小化
- DOI:
10.1016/j.jhazmat.2025.138110 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:11.300
- 作者:
Hyejeong Kwon;Bo Li;Min Xu;Qingshi Wang;Tahir Maqbool;Huijie Lu;Mari Winkler;Daqian Jiang - 通讯作者:
Daqian Jiang
Biomass-based concrete could effectively decarbonize buildings in Mexico
基于生物质的混凝土可以有效实现墨西哥建筑的脱碳。
- DOI:
10.1016/j.resconrec.2025.108264 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:10.900
- 作者:
Felipe Rosas-Diaz;Cesar A. Juárez-Alvarado;Mingming Chen;Yunyang Ye;Rupert J. Myers;Daqian Jiang - 通讯作者:
Daqian Jiang
Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils
农业土壤中comammox Nitrospira的普遍性、多样性和活性
- DOI:
10.1016/j.scitoteuv.2019.136684 - 发表时间:
2020 - 期刊:
- 影响因子:9.8
- 作者:
Shaoyi Xu;Baozhan Wang;Yong Li;Daqian Jiang;Yuting Zhou;Aqiang Ding;Yuxiao Zong;Xiaoting Ling;Senyin Zhang;Huijie Lu - 通讯作者:
Huijie Lu
Daqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daqian Jiang', 18)}}的其他基金
An integrated technology for efficient selenium remediation
高效硒修复的综合技术
- 批准号:
2329227 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CAREER: Establishing a Knowledge Base for Use and Discharge of Poly- and Perfluoroalkyl Substances
事业:建立多氟烷基物质和全氟烷基物质的使用和排放知识库
- 批准号:
2144550 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
相似海外基金
Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
- 批准号:
2343831 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Unlocking the secret chemistry of organosulfur biodegradation
解开有机硫生物降解的秘密化学
- 批准号:
DP240100126 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Discovery Projects
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Expanding the Toolbox for Assessing Polymer Biodegradation
扩展评估聚合物生物降解的工具箱
- 批准号:
BB/Y51262X/1 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Training Grant
Assessing the environmental biodegradation of next-generation polyolefin plastics
评估下一代聚烯烃塑料的环境生物降解性
- 批准号:
2890432 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Studentship
RUI: Synergistic biodegradation of polyethylene terepthalate (PET) plastic by microbial consortia
RUI:微生物群落对聚对苯二甲酸乙二醇酯 (PET) 塑料的协同生物降解
- 批准号:
2246498 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Biodegradation of fibrous microplastics in sludge following chemical modification by ozone
臭氧化学改性后污泥中纤维状微塑料的生物降解
- 批准号:
23H03569 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Graphene-induced charge separation for enhancing intimately coupled photocatalytic biodegradation
石墨烯诱导的电荷分离增强紧密耦合光催化生物降解
- 批准号:
23KF0111 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
I-Corps: Insect bioremediation and biodegradation for solid waste
I-Corps:昆虫生物修复和固体废物生物降解
- 批准号:
2233177 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Collaborative Research: Directed Enzyme Evolution Accelerated by Machine Learning for Enhancing the Biodegradation of Emerging Contaminants
合作研究:机器学习加速定向酶进化,增强新兴污染物的生物降解
- 批准号:
2203628 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant