Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling

草甘膦的电动生物降解:可行性、机制和传输模型

基本信息

  • 批准号:
    2305141
  • 负责人:
  • 金额:
    $ 39.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Glyphosate is the most widely employed herbicide in the United States and globally. Approximately, 800,000 tons of glyphosate are utilized worldwide every year. Although the impact of glyphosate (GLYP) on human health is still the subject of ongoing debate, exposure to high concentrations of GLYP has been shown to 1) adversely impact ecosystem health including toxicity to several species in aquatic ecosystems and 2) contribute to the emergence of glyphosate-resistant crops, and herbicide resistance in weed populations. GLYP may also adversely impact soil quality and fertility, either through direct mechanisms such as complexation with metal ions that are essential to plant growth in soils, or through indirect mechanisms such as adversely affecting the growth and metabolism of mycorrhizae and earthworms, which can adversely impact plant access to nutrients and water infiltration in soils. In addition, GLYP accumulates in soils with limited (bio)degradation and mineralization through natural attenuation. Given the widespread use of GLYP, its potential ecosystem toxicity, and the limitations of natural attenuation, there is a critical need for more efficient and cost-effective remediation technologies for GLYP contaminated soils. The overarching goal of this project is to explore and investigate the utilization of electrokinetic biodegradation (EK-Bio) as an effective remediation technology for GLYP contaminated soils. The proposed EK-Bio remediation technology utilizes an electric field to enhance the biodegradation of contaminants in soils. The successful completion of this project will benefit society through the generation of new fundamental knowledge, data, and modeling tools to advance the design and deployment of more efficient and cost-effective technologies for the remediation of soils contaminated with GLYP to enable its safe and sustainable use in agriculture and farming. Additional benefits to society will be achieved through student education and training including the mentoring of a post-doctoral research fellow, one graduate student, and one undergraduate student at the University of Alabama.As a potential glyphosate (GLYP) soil remediation technology, electrokinetic biodegradation (EK-Bio) has several advantages. First, EK-Bio is an in-situ technology that utilizes an electric field to enhance the biodegradation of contaminants in soils including low-permeability soils. Second, EK-Bio can enhance the degradation of recalcitrant organic contaminants by enhancing ion movement (e.g., contaminants, nutrients, and electron donors/acceptors) and/or by increasing the activity of redox enzymes to enhance GLYP biodegradation in soils. Third, EK-Bio can easily be integrated with other technologies (e.g., soil flushing) to broaden its applicability and enhance its effectiveness. In this project, the Principal Investigators (PIs) propose to evaluate the hypothesis that EK-Bio has the potential to become an effective technology for the remediation of GLYP contaminated soils. To test this hypothesis, the PIs propose to carry out an integrated experimental and modeling research program. The specific objectives of the research are to 1) characterize GLYP degradation during EK-Bio under varying environmental and operating conditions in three model and representative soils; 2) probe and unravel the chemical and biological mechanisms of GLYP degradation using advanced analytical chemistry tools and molecular biology techniques; and 3) develop and validate a nonlocal reactive-transport model to simulate GLY fate and transport during an EK-Bio process. To implement the education and training goals of this project, the PIs plan to leverage existing programs at the University of Alabama (UA) to recruit and mentor undergraduate students to work on the project research activities. In addition, the PIs propose to partner with the University of Alabama Regional In-Service Education Center to deliver two annual education activities consisting of immersive lab demonstrations for high school students and teachers selected from over 120 schools in Western Alabama including a “Scientist for Day” program (Fall Semester) and a “Honor Day” program (Spring Semester).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
草甘膦是美国和全球最广泛使用的除草剂。每年在全球范围内使用大约800,000吨糖酸盐。尽管糖苷(GLYP)对人类健康的影响仍然是持续辩论的主题,但已经显示出对高浓度的Glyp的暴露于1)对生态系统健康的不利影响,包括对水生生态系统中的几种物种的毒性和2)2))有助于糖脂抗性的crap和耐药的杂草耐药性的抗性。 GLYP还可能通过直接机制(例如与金属离子络合,对于土壤中的植物生长或间接机制)(例如对菌根和earth虫的生长和代谢产生不利影响)的直接机制,可能会对土壤质量和生育率产生不利影响,这可以不利地影响植物在土壤中的营养和水渗透。此外,Glyp通过自然衰减在有限(生物)降解和矿化的土壤中积累。考虑到Glyp的宽度使用,其潜在的生态系统毒性以及自然衰减的局限性,对于Glyp污染的土壤来说,至关重要的需要更有效,更具成本效益的补救技术。该项目的总体目标是探索和研究电子生物降解(EK-BIO)作为GLYP污染土壤的有效补救技术。拟议的EK-BIO补救技术利用电场来增强土壤中污染物的生物降解。该项目的成功完成将通过产生新的基本知识,数据和建模工具来使社会受益,以推动设计和部署更有效,更具成本效益的技术,以修复被Glyp污染的土壤,以促进其在协议和农业中安全且可持续的使用。将通过学生的教育和培训来实现社会的其他好处,包括在阿拉巴马大学的一名博士后研究员,一名研究生和一名本科生的心理。首先,Ek-Bio是一种原位技术,它利用电场来增强包括低渗透性土壤在内的土壤中污染物的生物降解。其次,EK-BIO可以通过增强离子运动(例如,污染物,营养素和电子供体/受体)和/或增加氧化还原酶的活性来增强土壤中Glyp生物降解的活性,从而增强顽固有机污染物的降解。第三,可以轻松地将EK-BIO与其他技术(例如,土壤冲洗)集成,以扩大其适用性并提高其有效性。在该项目中,主要研究人员(PIS)提出了评估Ek-Bio有可能成为修复Glyp污染土壤的有效技术的假设的建议。为了检验这一假设,PIS提出了进行集成的实验和建模研究计划。研究的具体目标是1)在三种模型和代表性的土壤中,在不同的环境和操作条件下,在EK-BIO期间Glyp降解的特征; 2)使用先进的分析化学工具和分子生物学技术探测和阐明GLYP降解的化学和生物学机制; 3)开发和验证非局部反应性传输模型,以模拟EK-BIO过程中的Gly命运和运输。为了实施该项目的教育和培训目标,PIS计划利用阿拉巴马大学(UA)的现有计划来招募和导师本科生,以从事项目研究活动。此外,PIS提议与阿拉巴马大学区域内部教育中心合作,提供两项由来自西方阿拉巴马州西部120多名学校的沉浸式实验室示范组成的年度教育活动,包括“日常科学家”计划(秋季学期)(秋季学期)和“荣誉日”计划(春季学期)。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daqian Jiang其他文献

Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES)
  • DOI:
    10.1016/j.watres.2024.122844
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adriana Riveros;Benhur K. Asefaw;Qingshi Wang;Tahir Maqbool;Youneng Tang;Daqian Jiang
  • 通讯作者:
    Daqian Jiang
Evolution of the global polyethylene waste trade system
全球聚乙烯废物贸易体系的演变
  • DOI:
    10.1080/20964129.2020.1756925
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wen Xu;Wei-Qiang Chen;Daqian Jiang;Chao Zhang;Zijie Ma;Yan Ren;Lei Shi
  • 通讯作者:
    Lei Shi
Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils
农业土壤中comammox Nitrospira的普遍性、多样性和活性
  • DOI:
    10.1016/j.scitoteuv.2019.136684
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Shaoyi Xu;Baozhan Wang;Yong Li;Daqian Jiang;Yuting Zhou;Aqiang Ding;Yuxiao Zong;Xiaoting Ling;Senyin Zhang;Huijie Lu
  • 通讯作者:
    Huijie Lu

Daqian Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daqian Jiang', 18)}}的其他基金

An integrated technology for efficient selenium remediation
高效硒修复的综合技术
  • 批准号:
    2329227
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Standard Grant
CAREER: Establishing a Knowledge Base for Use and Discharge of Poly- and Perfluoroalkyl Substances
事业:建立多氟烷基物质和全氟烷基物质的使用和排放知识库
  • 批准号:
    2144550
  • 财政年份:
    2022
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

高盐环境下厌氧反应器耦合CNT强化偶氮染料生物降解机制
  • 批准号:
    52370067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
好氧生物降解1,2,3-三氯丙烷关键功能生物酶定向调控方法及应用
  • 批准号:
    52370039
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
生活垃圾填埋场稀贵和稀土元素形态演变过程及其在生物降解中的作用机制研究
  • 批准号:
    22376163
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
PBAT生物降解地膜中化学添加剂的环境归趋、环境风险及其绿色替代品研究
  • 批准号:
    42311530066
  • 批准年份:
    2023
  • 资助金额:
    9.00 万元
  • 项目类别:
    国际(地区)合作研究与交流项目
微藻对多环芳烃生物降解转化的分子机制
  • 批准号:
    22376035
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
  • 批准号:
    2343831
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Standard Grant
Unlocking the secret chemistry of organosulfur biodegradation
解开有机硫生物降解的秘密化学
  • 批准号:
    DP240100126
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Discovery Projects
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
  • 批准号:
    10555093
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
操纵宿主组织以诱导分层微脉管系统
  • 批准号:
    10637683
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
K.C. Donnelly Externship - Promotion of Translational/Transdisciplinary Efforts in Graduate and Post-Doctoral Research
K.C.
  • 批准号:
    10797644
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了