An integrated technology for efficient selenium remediation

高效硒修复的综合技术

基本信息

  • 批准号:
    2329227
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Selenium is a metalloid that is utilized in the manufacturing of various industrial products including glasses, pigments, photovoltaic cells, and semiconductor devices. In recent years, the contamination of surface water systems and groundwater aquifers by selenium (Se) has become a critical problem in the United States and worldwide. In natural waters, Se predominantly exists as selenate (SeO42-) and selenite (SeO42-) oxyanion species which are both highly soluble and toxic. Although selenium (Se) is an essential micronutrient for human health due to its antioxidant properties, chronic exposure to excess Se can adversely impact ecosystem health causing mutations and reproductive impairments in fish and aquatic invertebrates as toxic Se oxyanions bioaccumulate in aquatic food chains. The overarching goal of this project is to explore the design, evaluation, and optimization of a new integrated treatment train that can extract toxic selenate/selenite oxyanions from contaminated water and reduce them to elemental selenium (Se0) which is non-toxic and non-soluble. To advance this goal, the Principal Investigators (PIs) propose to test the integration of a flow-electrode capacitive deionization (FCDI) ion separation process with a bioelectrochemical system (BES) into a compact reactor to remove, reduce, and detoxify selenate/selenite oxyanions from contaminated wastewater streams using electricity as driving force and power source. The successful completion of this project will benefit society through the generation of new fundamental knowledge and data to advance the design and deployment of more efficient and cost-effective technologies that could remove Se from industrial and contaminated wastewater streams prior to their discharge into receiving water bodies. Additional benefits to society will be achieved through student education and training including the mentoring of a post-doctoral research fellow, one graduate student, and one undergraduate student at the University of Alabama. Conventional and commercially available water treatment technologies (e.g., coagulation/precipitation, ion exchange, and reverse osmosis) cannot simultaneously remove toxic selenate/selenite oxyanions from contaminated water and convert them to non-toxic and insoluble zero valent selenium (Se0). In this project, the Principal Investigators (PIs) propose to test the hypothesis that the integration of a flow-electrode capacitive deionization (FCDI) ion separation process with a bioelectrochemical system (BES) into a compact reactor could enable the simultaneous removal, reduction, and conversion of toxic selenate/selenite oxyanions from contaminated wastewater to non-toxic Se0 using electricity as driving force and energy source. The specific objectives of the research are to 1) characterize, evaluate, and optimize the performance of the integrated FCDI-BES reactor under relevant operating conditions using synthetic and real-world selenium contaminated wastewater; 2) probe and unravel the molecular mechanisms of the bioelectrochemical reduction of selenate/selenite oxyanions using metagenomic sequencing; and 3) conduct a life cycle analysis (LCA) and a global sensitivity analysis to guide the optimization of the performance of the proposed new and integrated FCDI-BES treatment train. To implement the education and training goals of this project, the PIs plan to recruit and mentor undergraduate students to work on the project research activities. In addition, the PIs propose to leverage existing programs at the University of Alabama to design and deliver two annual educational activities consisting of immersive lab demonstrations for 30-50 high school students and teachers selected from over 120 schools located in the Alabama Black Belt, a region in the State of Alabama with persistent economic and social challenges including high poverty and high unemployment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硒是一种金属,用于制造各种工业产品,包括眼镜,色素,光伏电池和半导体设备。近年来,硒(SE)对地表供水系统和地下水含水层的污染已成为美国和全球的关键问题。 在天然水域中,SE主要以硒酸盐(SEO42-)和硒酸盐(SEO42-)氧气存在,它们既高度溶于又有毒。尽管由于其抗氧化特性,硒(SE)是人类健康的必不可少的微量营养素,但长期暴露于过量的SE会对生态系统健康产生不利影响,从而导致鱼类和水脊椎动物的突变和生殖障碍,因为它们是有毒的SE氧氧化物的生物含量生物含量的生物含量。该项目的总体目标是探索新的综合治疗列车的设计,评估和优化,该治疗列车可以从受污染的水中提取有毒的硒酸盐/亚硒酸盐的氧气,并将其减少到元素硒(SE0),该元素(SE0)是无毒和非溶质的。为了促进这一目标,主要研究人员(PIS)提议通过生物电化学系统(BES)测试流动电极能力脱位(FCDI)离子分离过程(BES)中,以将硒酸盐/硒酸盐的氧化剂从污染器源和电动源中降低,减少,减少和排毒的硒酸盐/硒酸盐的氧化量和电动级别的启动。该项目的成功完成将通过生成新的基本知识和数据来使社会受益,以推动更有效,更具成本效益的技术的设计和部署,这些技术可以从工业中删除SE,然后将其污染到被污染的废水流中,然后才能将其排放到接收水体中。将通过学生的教育和培训来获得社会的其他好处,包括指导一名博士后研究员,一名研究生和阿拉巴马大学的一名本科生。常规和商业上可用的水处理技术(例如,凝结/沉淀,离子交换和反渗透)不能同时从受污染的水中去除有毒的硒酸盐/亚硒酸盐的氧气,并将其转化为无毒和无毒的零溶剂零元素(SE0)。在该项目中,首席研究人员(PIS)提议检验以下假说:流动电极电容式去离子(FCDI)离子分离过程与生物电性化学系统(BES)的整合可以使紧凑反应器中的反应器同时使用,从而使非氧化剂与毒素的氧化/氧化量相位降低,并可以使人降低,并将其降低,并将其转化为毒素/氧化型氧化。电力作为驱动力和能源。研究的具体目标是1)使用合成和现实世界中的硒污染的废水来表征,评估和优化相关操作条件下集成的FCDI-BES反应器的性能; 2)使用元基因组测序,探针和阐明了硒酸盐/亚硒酸盐的生物电化学还原的分子机制; 3)进行生命周期分析(LCA)和全球灵敏度分析,以指导拟议的新型FCDI-BES治疗列车的性能优化。为了实施该项目的教育和培训目标,PIS计划招募和指导本科生从事项目研究活动。此外,PIS建议利用阿拉巴马大学的现有课程设计并提供两项年度教育活动,包括30-50名高中生和教师从阿拉巴马州黑带的120多所学校中选出的沉浸式实验室演示,该地区是阿拉巴马州的一个地区,阿拉巴马州的一个地区,持续的经济和社会挑战,包括高级贫困和高级奖励。使用基金会的智力优点和更广泛的影响评估标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daqian Jiang其他文献

Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES)
  • DOI:
    10.1016/j.watres.2024.122844
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adriana Riveros;Benhur K. Asefaw;Qingshi Wang;Tahir Maqbool;Youneng Tang;Daqian Jiang
  • 通讯作者:
    Daqian Jiang
Evolution of the global polyethylene waste trade system
全球聚乙烯废物贸易体系的演变
  • DOI:
    10.1080/20964129.2020.1756925
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wen Xu;Wei-Qiang Chen;Daqian Jiang;Chao Zhang;Zijie Ma;Yan Ren;Lei Shi
  • 通讯作者:
    Lei Shi
Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils
农业土壤中comammox Nitrospira的普遍性、多样性和活性
  • DOI:
    10.1016/j.scitoteuv.2019.136684
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Shaoyi Xu;Baozhan Wang;Yong Li;Daqian Jiang;Yuting Zhou;Aqiang Ding;Yuxiao Zong;Xiaoting Ling;Senyin Zhang;Huijie Lu
  • 通讯作者:
    Huijie Lu

Daqian Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daqian Jiang', 18)}}的其他基金

Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling
草甘膦的电动生物降解:可行性、机制和传输模型
  • 批准号:
    2305141
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Establishing a Knowledge Base for Use and Discharge of Poly- and Perfluoroalkyl Substances
事业:建立多氟烷基物质和全氟烷基物质的使用和排放知识库
  • 批准号:
    2144550
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

数据-物理融合驱动的薄壁件高效铣削状态诊断与控制技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
蚕丝制药--重组鲎C因子在家蚕丝腺中高效可溶性表达的技术融合创新研究
  • 批准号:
    42266004
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
数据-物理融合驱动的薄壁件高效铣削状态诊断与控制技术研究
  • 批准号:
    52275445
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
蚕丝制药--重组鲎C因子在家蚕丝腺中高效可溶性表达的技术融合创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向星地融合的高效高可靠编码调制技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目

相似海外基金

Integrated morphological and transcriptomic single-cell profiling of patient-derived cells as a platform for genomic and translational medicine
患者来源细胞的综合形态学和转录组单细胞分析作为基因组和转化医学的平台
  • 批准号:
    10802704
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
  • 批准号:
    10700801
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
  • 批准号:
    10352963
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
SCH: ChangeGradients: Promoting Health Behavior Change with Clinically Integrated Sample-Efficient Policy Gradient Methods
SCH:ChangeGradients:通过临床整合的样本有效策略梯度方法促进健康行为改变
  • 批准号:
    10379780
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
UNITS: The UNC / UT National Clinical Trials Network Group Integrated Translational Science Production and Consultation Center
单位:北卡罗来纳大学/德克萨斯大学国家临床试验网络集团综合转化科学生产和咨询中心
  • 批准号:
    9892991
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了