High-order immersed-boundary methods in solid mechanics for structures generated by additive processes

固体力学中增材过程生成结构的高阶浸入边界方法

基本信息

项目摘要

The central research topic of our project is the Finite Cell Method, a high-order fictitious domain approach. We plan to further extend this method to nonlinear structural mechanics including multi-physics, multi-scale and evolving domain problems. As a demonstrator application for this method, we use product and process simulation for additive manufacturing. Most important in our project is the tight interaction between advanced mechanical modeling, research on efficient algorithms, and rigorous mathematical analysis, with the goal of developing predictive and quality assured simulation capabilities for a class of hard problems, where existing approaches are only of limited value. Whereas the first project phase focused on essential algorithmic questions like accurate and efficient integration of cut cells, local adaptivity for multi-physics problems, and first error estimations including a posteriori error analysis for linear problems, the second phase will focus on an extension to more complex nonlinear problems. We expect that the Finite Cell Method inherits well-known basic properties of the high-order p-FEM in the interior of domains. Yet, special emphasis has to be laid on a proper treatment of cut cells at the boundary of the embedded domain. Concerning nonlinear problems we will concentrate on nearly incompressible material including large deformations, elastoplasticity, and the treatment of history variables in the case of dynamically adapted hp-approximations. A focal point of our research on coupled problems with transient domains (a central aspect of additive manufacturing processes) will lie on the question of a proper energy conservative initialization of previously void parts. Additionally, we will extend the class of investigated shape functions to splines as they are very successfully used in Isogeometric Analysis. Thereby, we will be able to study the influence of inter-element continuity and differentiability properties on the approximation quality of coupled multi-physics problems. A further important focus is on the derivation of a posteriori error controls and the development of adaptive schemes for the Finite Cell Method and the classes of problems specified above, where particular attention is paid to cut cells and related quadratures.Last but not least, we will continue to actively participate in the definition and calculation of benchmark problems that are developed within the priority programme.
本计画的中心研究课题为有限单元法,一种高阶虚拟区域法。我们计划进一步将这种方法推广到非线性结构力学,包括多物理场,多尺度和发展领域的问题。作为这种方法的演示应用,我们使用产品和过程模拟进行增材制造。在我们的项目中,最重要的是先进的机械建模,高效算法的研究和严格的数学分析之间的紧密互动,目标是为一类困难的问题开发预测和质量保证的仿真能力,现有的方法只有有限的价值。第一个项目阶段侧重于基本的算法问题,如切割单元的准确和有效集成,多物理问题的局部自适应性,以及包括线性问题后验误差分析在内的第一次误差估计,第二阶段将专注于扩展到更复杂的非线性问题。我们期望有限单元法在区域内部继承了高阶p-FEM的基本性质。然而,特别强调必须放在一个适当的处理切割细胞的边界处的嵌入域。关于非线性问题,我们将集中在几乎不可压缩的材料,包括大变形,弹塑性,和处理的历史变量的情况下,动态适应hp-近似。 我们对瞬态域耦合问题(增材制造工艺的一个核心方面)的研究重点将在于对先前空部件进行适当的能量守恒初始化的问题。此外,我们将扩展类的调查形状函数样条,因为它们是非常成功地用于等几何分析。因此,我们将能够研究的影响,单元间的连续性和可微性的耦合多物理问题的近似质量。另一个重要的重点是推导后验误差控制和开发有限单元法和上述问题的自适应方案,特别注意切割单元和相关的求积。最后但并非最不重要的是,我们将继续积极参与优先计划中开发的基准问题的定义和计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Alexander Düster其他文献

Professor Dr.-Ing. Alexander Düster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Alexander Düster', 18)}}的其他基金

Simulation and experimental testing of the collision behaviour of ships with double hulls filled with particles
双壳填充颗粒船舶碰撞行为模拟与实验测试
  • 批准号:
    268649611
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Electro-thermo-mechanical modeling of Field Assisted Sintering Technology using high-order finite elements validated by experiments
使用经过实验验证的高阶有限元对现场辅助烧结技术进行电热机械建模
  • 批准号:
    165958631
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The hierarchical finite cell method for multi-scale problems in structural mechanics
结构力学多尺度问题的分层有限元方法
  • 批准号:
    183669279
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extension of fictitious domain methods for vibroacoustic problems – Analysis of heterogeneous, foamed damping materials
振动声学问题虚拟域方法的扩展 â 分析异质泡沫阻尼材料
  • 批准号:
    503865803
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A remeshing approach for the finite cell method applied to problems with large deformations
一种适用于大变形问题的有限单元法的重新网格划分方法
  • 批准号:
    505137962
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical modelling of partially cemented soils in the stagnation zone
停滞区部分胶结土的数值模拟
  • 批准号:
    448085183
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
  • 批准号:
    23H01341
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CFD simulations of fluid dynamics in sports science for better performance of athletes
运动科学中流体动力学的 CFD 模拟可提高运动员的表现
  • 批准号:
    20K19503
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Influence of Pore Connectivity on Upscaling Effects of Porous Media Flow
孔隙连通性对多孔介质流放大效应的影响
  • 批准号:
    19H02252
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Lubricated Immersed Boundary Method: Numerical Analysis, Benchmarking, and Applications
润滑浸入边界法:数值分析、基准测试和应用
  • 批准号:
    1913093
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Accurate interface capturing for two-phase flow simulation with immersed boundary method
使用浸入边界法精确捕捉两相流模拟界面
  • 批准号:
    18K03937
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wetting of Elastic Fibres: A Novel Immersed Boundary-Lattice Spring-Lattice Boltzmann Simulation Approach
弹性纤维的润湿:一种新颖的浸入式边界晶格弹簧晶格玻尔兹曼模拟方法
  • 批准号:
    EP/P007139/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Simulation of Moving Objects on an Cartesian Mesh Using an Improved Alternating Direction Forcing Immersed Boundary Method
使用改进的交替方向强制浸没边界法模拟笛卡尔网格上的运动物体
  • 批准号:
    2091216
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Surface-mounted bluff bodies immersed in deep turbulent boundary layers
浸没在深层湍流边界层中的表面安装钝体
  • 批准号:
    519892-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
A Fundamental Study on analysis of pore structure of porous media and elucidation of generation mechanism of turbulence based on the analysis
多孔介质孔隙结构分析及基于分析阐明湍流产生机理的基础研究
  • 批准号:
    16H04421
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
  • 批准号:
    1522537
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了