A remeshing approach for the finite cell method applied to problems with large deformations
一种适用于大变形问题的有限单元法的重新网格划分方法
基本信息
- 批准号:505137962
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The primary goal of the proposed research project is to further develop the finite cell method (FCM) - a high-order fictitious domain approach - for large deformation analysis including finite strain problems of elastoplasticity. Foamed materials will be used as a demonstrator application, as they feature complex geometries and a complex deformation behavior. Recently, we introduced a remeshing strategy to improve the robustness of the FCM for large deformations. Here, the deformed structure is remeshed when finite cells are distorted too severely. Since the FCM applies Cartesian grids, the remeshing is simple and can be carried out fully automatically. The method performs well for hyperelastic finite strain problems, and the structure under consideration can be deformed much further when applying the remeshing strategy. Nevertheless, there are still many open questions which we would like to address in this project. First of all, different remeshing criteria need to be developed and investigated in order to reliably determine when remeshing has to be initiated during the analysis. Another considerable challenge in elastoplastic analysis – because of the non-smooth data – is the interpolation of history data from the old to the new mesh. Therefore, error-controlled interpolation algorithms need to be developed. Since the computation of the element/cell matrices accounts for a significant part of the overall effort in high-order methods, special attention will be placed on this point. This is of great importance since the finite cell method requires a dense set of integration points to resolve the geometry of the broken cells. In addition, the nonlinear material models with an increased numerical effort at each integration point, combined with the repeated computation of the tangent stiffness matrix will increase the numerical effort. Thus, we aim at reducing the number of integration points. This can be achieved by applying the moment fitting where a quadrature rule is derived for every broken cell. To this end, we will extend and study the moment fitting for the case of finite strain elastoplasticity. In order to judge the robustness, accuracy, and efficiency of the overall remeshing approach, we will consider carefully selected benchmark problems and compare the proposed method with other finite element formulations.
拟议的研究项目的主要目标是进一步发展有限单元法(FCM)-高阶虚拟域方法-大变形分析,包括弹塑性有限应变问题。 泡沫材料将被用作演示应用,因为它们具有复杂的几何形状和复杂的变形行为。最近,我们引入了一个重新网格化的策略,以提高大变形的FCM的鲁棒性。在这里,当有限单元变形太严重时,变形的结构被重新网格化。由于FCM采用笛卡尔网格,网格重划分简单,可以全自动进行。该方法对超弹性有限应变问题有很好的计算效果,并且在网格重划分策略的作用下,结构可以进一步变形。尽管如此,在这个项目中,我们仍然有许多悬而未决的问题要解决。首先,需要开发和研究不同的网格重新划分标准,以便在分析期间可靠地确定何时必须启动网格重新划分。弹塑性分析中的另一个相当大的挑战-由于非光滑数据-是从旧网格到新网格的历史数据的插值。因此,需要开发误差控制的插补算法。由于单元/单元矩阵的计算占高阶方法总工作量的重要部分,因此将特别注意这一点。这是非常重要的,因为有限单元法需要一组密集的积分点来解决断裂单元的几何形状。此外,在每个积分点处具有增加的数值工作量的非线性材料模型与切线刚度矩阵的重复计算相结合将增加数值工作量。因此,我们的目标是减少积分点的数量。这可以通过应用矩拟合来实现,其中对于每个破碎的单元推导出求积规则。为此,我们将扩展和研究的情况下,有限应变弹塑性矩拟合。为了判断整体重新网格划分方法的鲁棒性,准确性和效率,我们将仔细选择基准问题,并将所提出的方法与其他有限元公式进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Alexander Düster其他文献
Professor Dr.-Ing. Alexander Düster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Alexander Düster', 18)}}的其他基金
Simulation and experimental testing of the collision behaviour of ships with double hulls filled with particles
双壳填充颗粒船舶碰撞行为模拟与实验测试
- 批准号:
268649611 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
High-order immersed-boundary methods in solid mechanics for structures generated by additive processes
固体力学中增材过程生成结构的高阶浸入边界方法
- 批准号:
255496529 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Electro-thermo-mechanical modeling of Field Assisted Sintering Technology using high-order finite elements validated by experiments
使用经过实验验证的高阶有限元对现场辅助烧结技术进行电热机械建模
- 批准号:
165958631 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
The hierarchical finite cell method for multi-scale problems in structural mechanics
结构力学多尺度问题的分层有限元方法
- 批准号:
183669279 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Extension of fictitious domain methods for vibroacoustic problems – Analysis of heterogeneous, foamed damping materials
振动声学问题虚拟域方法的扩展 â 分析异质泡沫阻尼材料
- 批准号:
503865803 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Numerical modelling of partially cemented soils in the stagnation zone
停滞区部分胶结土的数值模拟
- 批准号:
448085183 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
量化 domain 的拓扑性质
- 批准号:11771310
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
- 批准号:30470298
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10467144 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10610468 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
- 批准号:
580759-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Increasing Accessibility of Laparoscopic Surgery in Low- and Middle-Income Countries
提高低收入和中等收入国家腹腔镜手术的可及性
- 批准号:
10454790 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Developing an Automated Image Analysis and Finite Element Modeling Platform to Assess the Effects of Supplemental Protein and Weight Loss on Bone Health in Obese Older Adults
开发自动图像分析和有限元建模平台来评估补充蛋白质和减肥对肥胖老年人骨骼健康的影响
- 批准号:
10312760 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Determination of Pediatric Osteogenesis Imperfecta Bone Material Properties
儿童成骨不全骨材料特性的测定
- 批准号:
10217432 - 财政年份:2020
- 资助金额:
-- - 项目类别: