The hierarchical finite cell method for multi-scale problems in structural mechanics

结构力学多尺度问题的分层有限元方法

基本信息

项目摘要

Many important problems in structural mechanics are of a multi-scale nature. In problems of this kind, the global behavior of the structure is influenced by phenomena occurring on scales that are orders of magnitude smaller than the dimensions of the structure under investigation. This situation occurs in almost all engineering applications such as civil engineering, naval architecture or mechanical engineering. In order to simulate multi-scale problems reliably in structural mechanics, it is therefore essential to develop efficient numerical methods. In spite of the recent progress made in terms of computing power, performing such simulations based on standard methods, like the finite element method, for all scales is beyond the reach of present-day computer systems. During the first, 2-year period of this research proposal, we tackled several aspects of elastostatic problems connected with multi-scale behavior by further developing the finite cell method (FCM). One of the main achievements we accomplished was to develop a hierarchical refinement strategy for the FCM, which enabled us to compute multi-scale problems efficiently. In the second project period, we wish to extend the hierarchical FCM to three-dimensional problems that crop up in elastodynamics. In this regard, we will address the simulation of wave propagationin heterogeneous materials and composites by developing the FCM further in orderto provide an efficient simulation method. We expect that the new method to be developed will significantly extend the possibilities of wave propagation simulation to support technologies such as structural health monitoring by applying high-frequency loading for detecting damage in engineering structures.
结构力学中的许多重要问题都具有多尺度的性质。在这类问题中,结构的整体行为受到发生在比所研究结构的尺寸小几个数量级的尺度上的现象的影响。这种情况发生在几乎所有的工程应用中,如土木工程、造船或机械工程。因此,为了可靠地模拟结构力学中的多尺度问题,必须发展有效的数值方法。尽管最近在计算能力方面取得了进展,但基于标准方法(如有限元法)对所有尺度进行这种模拟是当今计算机系统无法达到的。在本研究计划的头两年期间,我们通过进一步发展有限细胞方法(FCM),解决了与多尺度行为相关的弹性静力学问题的几个方面。我们取得的主要成就之一是为FCM开发了一种分层优化策略,使我们能够有效地计算多尺度问题。在第二个项目期间,我们希望将分层FCM扩展到弹性动力学中出现的三维问题。在这方面,我们将通过进一步发展FCM来解决波在非均质材料和复合材料中的传播模拟,以提供一种有效的模拟方法。我们期望开发的新方法将极大地扩展波传播模拟的可能性,以支持通过应用高频加载来检测工程结构损伤的结构健康监测等技术。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical integration of discontinuities on arbitrary domains based on moment fitting
  • DOI:
    10.1007/s00466-016-1273-3
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Meysam Joulaian;Simeon Hubrich;A. Düster
  • 通讯作者:
    Meysam Joulaian;Simeon Hubrich;A. Düster
Finite and spectral cell method for wave propagation in heterogeneous materials
  • DOI:
    10.1007/s00466-014-1019-z
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Meysam Joulaian;S. Duczek;U. Gabbert;A. Düster
  • 通讯作者:
    Meysam Joulaian;S. Duczek;U. Gabbert;A. Düster
Numerical analysis of Lamb waves using the finite and spectral cell methods
Local enrichment of the finite cell method for problems with material interfaces
  • DOI:
    10.1007/s00466-013-0853-8
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Meysam Joulaian;A. Düster
  • 通讯作者:
    Meysam Joulaian;A. Düster
Numerical homogenization of hybrid metal foams using the finite cell method
  • DOI:
    10.1016/j.camwa.2015.05.009
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Heinze, Stephan;Joulaian, Meysam;Duester, Alexander
  • 通讯作者:
    Duester, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Alexander Düster其他文献

Professor Dr.-Ing. Alexander Düster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Alexander Düster', 18)}}的其他基金

Simulation and experimental testing of the collision behaviour of ships with double hulls filled with particles
双壳填充颗粒船舶碰撞行为模拟与实验测试
  • 批准号:
    268649611
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-order immersed-boundary methods in solid mechanics for structures generated by additive processes
固体力学中增材过程生成结构的高阶浸入边界方法
  • 批准号:
    255496529
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Electro-thermo-mechanical modeling of Field Assisted Sintering Technology using high-order finite elements validated by experiments
使用经过实验验证的高阶有限元对现场辅助烧结技术进行电热机械建模
  • 批准号:
    165958631
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Extension of fictitious domain methods for vibroacoustic problems – Analysis of heterogeneous, foamed damping materials
振动声学问题虚拟域方法的扩展 â 分析异质泡沫阻尼材料
  • 批准号:
    503865803
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A remeshing approach for the finite cell method applied to problems with large deformations
一种适用于大变形问题的有限单元法的重新网格划分方法
  • 批准号:
    505137962
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical modelling of partially cemented soils in the stagnation zone
停滞区部分胶结土的数值模拟
  • 批准号:
    448085183
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
  • 批准号:
    10638817
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Impact of HIV and antiretroviral initiation on skeletal biology
HIV 和抗逆转录病毒治疗对骨骼生物学的影响
  • 批准号:
    10657701
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Medical Device Design and Innovation; Orthopaedic Implant Failure Analysis and Redesign
医疗器械设计与创新;
  • 批准号:
    10409163
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
  • 批准号:
    10539600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Impact of HIV and antiretroviral initiation on skeletal biology
HIV 和抗逆转录病毒治疗对骨骼生物学的影响
  • 批准号:
    10537735
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mesenteric Fat Cryolipolysis to Reverse Insulin Resistance
肠系膜脂肪冷冻溶脂逆转胰岛素抵抗
  • 批准号:
    10603168
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Medical Device Design and Innovation; Orthopaedic Implant Failure Analysis and Redesign
医疗器械设计与创新;
  • 批准号:
    10614004
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
BCCMA:Foundational Research to Act Upon and Resist Conditions unfavorable to bone (FRACTURECURB):Role of abaloparatide for fracture healing
BCCMA:针对和抵抗不利于骨骼的条件的基础研究 (FRACTURECURB):abaloparatide 在骨折愈合中的作用
  • 批准号:
    10584445
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Coupling Particle In Cell with High-Order Finite Elements and Uncertainty Quantification.
细胞内粒子与高阶有限元和不确定性量化的耦合。
  • 批准号:
    2752158
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
3D printed bioresorbable sleeve device for esophageal atresia repair
用于食管闭锁修复的3D打印生物可吸收套筒装置
  • 批准号:
    10574363
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了