Foundation and Application of Generalized Mixed FEM Towards Nonlinear Problems in Solid Mechanics
固体力学非线性问题的广义混合有限元的基础及应用
基本信息
- 批准号:255510958
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research of this project aims at the mathematical foundation and the engineering application of generalized mixed FEM as well as the development and the analysis of new non-standard methods that yield guaranteed results for nonlinear problems in solid mechanics. The practical applications in computational engineering will be the focus of the Workgroup LUH at the Leibniz University Hannover in cooperation with the Workgroup HU at the Humboldt Universität zu Berlin with focus on mathematical foundation of the novel discretization schemes. The joint target is the effective and reliable simulation in nonlinear continuum mechanics with development of adaptive numerical discretizations based on ultraweak formulations between nonconforming, mixed and discontinuous Galerkin or Petrov-Galerkin Finite Element Methods. In the first funding period, the workgroup LUH developed different discontinuous discretization methods. An efficient extension/enhancement of the original discontinuous Galerkin Finite Element Method (dG FEM) avoids shear-locking effects and volumetric-locking for (nearly) incompressible and elasto-plastic material behaviour. The workgroup HU developed and analysed a discontinuous Petrov-Galerkin (dPG) FEM for a nonlinear model problem in collaboration with the workgroup LUH and proved optimal convergence rates of adaptive dPG and least-squares methods for linear elastic problems. Further topics of research were guaranteed error bounds for pointwise symmetric discretizations in linear elasticity and the analysis of nonconforming FEM for polyconvex materials.The focus of the second funding period will be a further close collaboration of both workgroups regarding the extension of the dPG FEM to nonlinear-elastic material behaviour. Therefore, various dPG formulations will be investigated and exercised on relevant mechanical problems by the Workgroup LUH. The implementation in AceGen facilitates expeditious and efficient comparison among different discretizations with respect to convergence behaviour of this novel finite element formulations. The workgroup HU will continue their analysis on nonlinear problems in raising difficulty from Hencky material to polyconvex material and geometric nonlinear configurations. Recent breakthroughs in the dPG methodology for nonlinear problems motivate the application of adaptive dPG schemes with built-in error control to further problems such as hyperelasticity, the obstacle problem and time-evolving elastoplasticity. Optimal convergence rates of adaptive nonlinear LS and dPG methods and Arnold-Winther FEM and guaranteed error estimation for dPG methods involving explicit constants and correct scaling will be investigated.Outreach activities such as coorganization of minisymposia or Oberwolfach workshops (e.g. »Computational Engineering« in 2015, 2018) have fostered the exchange of ideas and fruitful collaborations within the SPP and beyond.
本项目的研究目标是广义混合有限元法的数学基础和工程应用,以及固体力学中非线性问题的新的非标准方法的发展和分析。在计算工程中的实际应用将是工作组LUH在汉诺威与工作组HU在洪堡大学合作的重点在柏林的数学基础上的新的离散计划。共同目标是非线性连续介质力学的有效且可靠的模拟,并开发基于非协调、混合和不连续伽辽金或彼得罗夫-伽辽金有限元方法之间的超弱公式的自适应数值离散化。在第一个资助期内,CNOLUH开发了不同的不连续离散化方法。一个有效的扩展/增强原来的不连续伽辽金有限元法(dG FEM)避免剪切锁定效应和体积锁定(几乎)不可压缩和弹塑性材料的行为。该研究所开发和分析了一个非线性模型问题的不连续彼得罗夫-伽辽金(dPG)有限元与LUH合作,并证明了自适应dPG和最小二乘方法的最佳收敛速度的线性弹性问题。进一步的研究课题是保证误差界逐点对称离散线弹性和分析的dPG有限元polyconvex material.The第二个资助期的重点将是进一步密切合作的两个工作组的dPG有限元扩展到非线性弹性材料的行为。因此,LUH工作组将对各种dPG公式进行研究,并就相关的机械问题进行练习。在AceGen中的实施有利于快速和有效的比较不同的离散化方面的收敛行为,这种新的有限元制剂。该协会将继续他们的非线性问题的分析,提高难度从Hencky材料到多凸材料和几何非线性配置。最近的突破,在dPG方法的非线性问题的激励应用程序的自适应dPG计划与内置的误差控制进一步的问题,如超弹性,障碍问题和随时间变化的弹塑性。将研究自适应非线性LS和dPG方法以及Arnold-Winther FEM的最优收敛速度,以及涉及显式常数和正确缩放的dPG方法的保证误差估计。外联活动,如共同组织minisymopsia或Oberwolfach研讨会(例如2015年,2018年的»计算工程«),促进了SPP内外的思想交流和富有成效的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Carsten Carstensen其他文献
Professor Dr. Carsten Carstensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Carsten Carstensen', 18)}}的其他基金
Numerical algorithms for the simulation of finite plasticity with microstructures
微结构有限塑性模拟的数值算法
- 批准号:
35736987 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Mathematische Modellierung und effiziente Numerik zur Simulation vom Werkzeugschleifen
模拟刀具磨削的数学建模和高效数值分析
- 批准号:
5449171 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Numerische Relaxierung von nichtkonvexen Funktionalen der Festkörpermechanik
固体力学非凸泛函的数值松弛
- 批准号:
5436951 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Numerik einfacher Schalenmodelle mit nichtlinearem Materialverhalten
具有非线性材料行为的简单壳模型的数值
- 批准号:
5303028 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
- 批准号:
2231863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Application of the cluster nonequilibrium relaxation scheme (generalized to quantum systems and off-critical regions) to random systems
簇非平衡弛豫方案(推广到量子系统和非临界区)在随机系统中的应用
- 批准号:
23K03269 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Equations of State for Strongly Associated Fluids Based on a Generalized Hydrogen-bonding Model: Application to ISO International Standard Formulations
基于广义氢键模型的强缔合流体的基本状态方程:在 ISO 国际标准公式中的应用
- 批准号:
20K04338 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized inverse optimization with application to radiation therapy
广义逆优化在放射治疗中的应用
- 批准号:
RGPIN-2015-05180 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalized inverse optimization with application to radiation therapy
广义逆优化在放射治疗中的应用
- 批准号:
RGPIN-2015-05180 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
- 批准号:
1912444 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Generalized model for electron transfer at the interfaces of metal oxide/dye molecules/electrolyte and its application
金属氧化物/染料分子/电解质界面电子转移广义模型及其应用
- 批准号:
17H03099 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalized inverse optimization with application to radiation therapy
广义逆优化在放射治疗中的应用
- 批准号:
477891-2015 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Generalized inverse optimization with application to radiation therapy
广义逆优化在放射治疗中的应用
- 批准号:
RGPIN-2015-05180 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
- 批准号:
1739549 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant