SCH: INT: Collaborative Research: A Framework for Optimizing Hearing Aids In Situ Based on Patient Feedback, Auditory Context, and Audiologist Input

SCH:INT:协作研究:基于患者反馈、听觉环境和听力学家输入的现场优化助听器的框架

基本信息

  • 批准号:
    1838830
  • 负责人:
  • 金额:
    $ 70.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Twenty percent of Americans will be 65 years or older by 2030 out of which 35 - 50% will report having age-related hearing impairment that is treated primarily with hearing aids (HA). Regular use of HAs has been shown to improve communication and avoid the negative effects of hearing loss that include an increased risk of social isolation, depression, and inability to work, travel, or be physically active. Past research has shown that many people do not wear their HAs regularly, as they are unsatisfied with the performance in the real world. A fundamental limitation of existing methods for tuning HA is that they are not tailored to individual needs, which often leads to unsatisfactory performance. As part of this project, a team of computer scientists, engineers, and audiologists will develop new methods for tuning HAs that are based on the individual needs of a patient.The project is based on the approach that better HA configurations may be identified based on feedback from the patient that is collected in the moment and in situ. The project includes development of two systems for optimizing the configuration of HAs. The first system will improve the efficacy of the traditional tuning process by improving how feedback is obtained from patients, combined with auditory context information, and translated into HA configuration adjustments. The second system will automatically adapt the configuration of a HA based on patient feedback and auditory context information without requiring an audiologist to perform adjustments. The intellectual merit of this proposal includes the advances in machine learning necessary to model the performance of complex systems that have numerous parameters such as HAs and tuning their parameters based on feedback obtained from patients. Additionally, the project will advance the state-of-the-art in embedded systems by developing techniques to run HA optimization algorithms as part of a multi-tier system composed of HAs, mobile phones, and cloud services. It is anticipated that the proposed research will empower patients to become more involved in their hearing care, improve HA satisfaction, and enrich their social interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到2030年,20%的美国人将达到65岁或以上,其中35%-50%的人将报告患有主要使用助听器(HA)治疗的年龄相关性听力障碍。经常使用HAS已被证明可以改善沟通,避免听力损失的负面影响,包括增加社交孤立、抑郁和无法工作、旅行或体力活动的风险。过去的研究表明,许多人并不经常戴假发,因为他们对自己在现实世界中的表现不满意。现有HA调优方法的一个基本限制是它们不能针对个人需求进行定制,这往往会导致性能不令人满意。作为该项目的一部分,一个由计算机科学家、工程师和听觉学家组成的团队将根据患者的个人需求开发调整HA的新方法。该项目基于一种方法,即可以根据从患者那里收集的即时和现场反馈来确定更好的HA配置。该项目包括开发两个系统,以优化HAS的配置。第一个系统将通过改进从患者那里获得反馈的方式,结合听觉环境信息,并将其转化为HA配置调整,来提高传统调整过程的效率。第二个系统将根据患者反馈和听觉环境信息自动调整HA的配置,而不需要听力专家进行调整。这一建议的智力价值包括在机器学习方面的进步,这是对具有许多参数(如HAS)的复杂系统的性能建模所必需的,并基于从患者获得的反馈来调整它们的参数。此外,该项目将通过开发技术来运行HA优化算法,作为由HAS、移动电话和云服务组成的多层系统的一部分,从而推动嵌入式系统中的最先进技术。预计拟议的研究将使患者能够更多地参与他们的听力护理,提高医管局的满意度,并丰富他们的社会互动。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common Configurations of Real-Ear Aided Response Targets Prescribed by NAL-NL2 for Older Adults With Mild-to-Moderate Hearing Loss.
NAL-NL2 为轻度至中度听力损失的老年人规定的真耳辅助响应目标的常见配置。
  • DOI:
    10.1044/2020_aja-20-00025
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jensen,Justin;Vyas,Dhruv;Urbanski,Dana;Garudadri,Harinath;Chipara,Octav;Wu,Yu-Hsiang
  • 通讯作者:
    Wu,Yu-Hsiang
Auditory Environments and Hearing Aid Feature Activation Among Younger and Older Listeners in an Urban and Rural Area
  • DOI:
    10.1097/aud.0000000000001308
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jorgensen, Erik;Xu, Jingjing;Wu, Yu-Hsiang
  • 通讯作者:
    Wu, Yu-Hsiang
Personalizing over-the-counter hearing aids using pairwise comparisons
使用成对比较个性化非处方助听器
  • DOI:
    10.1016/j.smhl.2021.100231
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyas, Dhruv;Brummet, Ryan;Anwar, Yumna;Jensen, Justin;Jorgensen, Erik;Wu, Yu-Hsiang;Chipara, Octav
  • 通讯作者:
    Chipara, Octav
Comparing population coverage between hearing aids using presets vs Bose CustomTune.
比较使用预设的助听器与 Bose CustomTune 的人口覆盖范围。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sabin, Andrew;Jensen, Justin;Chipara, Octav;Wu, ‪Yu-Hsiang
  • 通讯作者:
    Wu, ‪Yu-Hsiang
Audio-Based Cough Detection in Clinic Waiting Rooms
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Octav Chipara其他文献

Octav Chipara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Octav Chipara', 18)}}的其他基金

SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
  • 批准号:
    2306331
  • 财政年份:
    2023
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
CAREER: Software Adaptation and Synthesis Techniques for Internet of Things Systems
职业:物联网系统的软件适配和综合技术
  • 批准号:
    1750155
  • 财政年份:
    2018
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Protocols and Analysis for Predictable Wireless Sensor Networks
NetS:小型:协作研究:可预测无线传感器网络的协议和分析
  • 批准号:
    1144664
  • 财政年份:
    2011
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 70.2万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 70.2万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了