SCH: Natural Language Processing for Enhanced Behavioral Counseling

SCH:用于增强行为咨询的自然语言处理

基本信息

项目摘要

As more people seek out counseling help, Natural Language Processing (NLP) technology can provide support for the growing number of counselor professionals to deliver quality-focused services. The overarching goal of this project is to make advances toward a new generation of NLP systems. It is expected to have significant implications in the way counseling is conducted because it will provide new ways to evaluate counselor effectiveness and assisting them with ongoing feedback and coaching in the form of automatic coding, as well as turn-taking and language suggestions. This will allow counselor professionals and other health care practitioners to improve the quality of their counseling through timely and cost-effective feedback. The methodology developed in this project will establish the foundations toward systems that can provide support for counseling interactions for a wide range of health care providers from physicians and nurses to disease management coaches and dietitians. The project will pursue several new and unique research directions in NLP inspired by the growing area of behavioral counseling. Specifically, the project targets the following four main objectives. (1) Create a large dataset of behavior counseling with extensive annotations, addressing several behaviors and covering several online and offline sources. (2) Develop methods that combine the recent advances in neural networks with symbolic representations encoding counseling strategies, and use these methods to classify counselor behaviors and predict their most likely future behavior based on previous interactions with the client. (3) Develop natural language generation models that will assist the counselors in their conversations, specifically focusing on the generation of questions and reflections. The methods will consist of generative neural models that learn from a large counseling dataset while explicitly modeling counseling strategies and integrating expert knowledge bases. (4) Create and evaluate a framework for the integration of NLP tools to provide feedback and coaching to counselors in training. Importantly, the project will incorporate feedback from domain experts and end users across the entire research pipeline, using focus groups to identify needs, preferences, and features to include in each design and implementation stage of the proposed research objectives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着越来越多的人寻求咨询帮助,自然语言处理(NLP)技术可以为越来越多的咨询专业人员提供支持,以提供以质量为中心的服务。该项目的总体目标是朝着新一代NLP系统迈进。它将提供新的方法来评估辅导员的有效性,并以自动编码的形式帮助他们进行持续的反馈和辅导,以及话轮转换和语言建议。这将使咨询师专业人员和其他医疗保健从业人员通过及时和具有成本效益的反馈来提高他们的咨询质量。在这个项目中开发的方法将建立的基础系统,可以提供支持咨询互动的广泛的医疗保健提供者,从医生和护士疾病管理教练和营养师。受不断增长的行为咨询领域的启发,该项目将在NLP领域寻求几个新的、独特的研究方向。具体而言,该项目针对以下四个主要目标。(1)创建一个具有广泛注释的行为咨询的大型数据集,解决几种行为并涵盖几个在线和离线来源。(2)开发出联合收割机,将神经网络的最新进展与编码咨询策略的符号表征相结合,并使用这些方法对咨询师的行为进行分类,并根据与客户的先前互动预测他们最可能的未来行为。(3)开发自然语言生成模型,帮助辅导员进行对话,特别是关注问题和思考的生成。这些方法将由生成神经模型组成,这些模型从大型咨询数据集中学习,同时明确建模咨询策略并整合专家知识库。 (4)创建和评估NLP工具整合的框架,为培训中的辅导员提供反馈和指导。重要的是,该项目将在整个研究管道中纳入来自领域专家和最终用户的反馈,使用焦点小组来确定需求,偏好和功能,包括在拟议研究目标的每个设计和实施阶段。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rada Mihalcea其他文献

NLP (Natural Language Processing) for NLP (Natural Language Programming)
NLP(自然语言处理)用于 NLP(自然语言编程)
Towards Building a Multilingual Semantic Network: Identifying Interlingual Links in Wikipedia
构建多语言语义网络:识别维基百科中的语际链接
Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction
和弦嵌入:分析它们捕获的内容及其在下一个和弦预测和艺术家属性预测中的作用
  • DOI:
    10.1007/978-3-030-72914-1_12
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison Lahnala;Gauri Kambhatla;Jiajun Peng;Matthew Whitehead;Gillian Minnehan;Eric Guldan;Jonathan K. Kummerfeld;Anil cCamci;Rada Mihalcea
  • 通讯作者:
    Rada Mihalcea
Matching Graduate Applicants with Faculty Members
将研究生申请者与教职人员匹配
  • DOI:
    10.1007/978-3-319-67217-5_4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shibamouli Lahiri;Carmen Banea;Rada Mihalcea
  • 通讯作者:
    Rada Mihalcea
Instagram and prostate cancer: using validated instruments to assess the quality of information on social media
Instagram 和前列腺癌:使用经过验证的工具评估社交媒体上的信息质量
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    A. Xu;Akya Myrie;Jacob Taylor;R. Matulewicz;Tian Gao;Verónica Pérez;Rada Mihalcea;S. Loeb
  • 通讯作者:
    S. Loeb

Rada Mihalcea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rada Mihalcea', 18)}}的其他基金

RI: Small: Demographic-Aware Lexical Semantics
RI:小:人口感知词汇语义
  • 批准号:
    1815291
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Semantic Interpretation with Monolingual and Cross-lingual Evidence
职业:单语和跨语言证据的语义解释
  • 批准号:
    1361274
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
INSPIRE Track 1: Language-Based Computational Methods for Analyzing Worldviews
INSPIRE Track 1:基于语言的世界观分析计算方法
  • 批准号:
    1344257
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RI: Small: Collaborative Research: Word Sense and Multilingual Subjectivity Analysis
RI:小型:协作研究:词义和多语言主观性分析
  • 批准号:
    0917170
  • 财政年份:
    2009
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SGER: Collaborative Research: Exploring the Role of Word Senses in Subjectivity Analysis
SGER:协作研究:探索词义在主观性分析中的作用
  • 批准号:
    0840608
  • 财政年份:
    2008
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Semantic Interpretation with Monolingual and Cross-lingual Evidence
职业:单语和跨语言证据的语义解释
  • 批准号:
    0747340
  • 财政年份:
    2008
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Workshop: Senseval-3 - Evaluation of Systems for the Semantic Analysis of Text; July 25-26, 2004; Barcelona, Spain
研讨会:Senseval-3 - 文本语义分析系统评估;
  • 批准号:
    0435695
  • 财政年份:
    2004
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SGER: Exploratory Research of Word Sense Disambiguation Methods for All Words in Open Text
SGER:开放文本中所有单词的词义消歧方法的探索性研究
  • 批准号:
    0336793
  • 财政年份:
    2003
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似国自然基金

Natural超对称中的希格斯物理与暗物质研究
  • 批准号:
    11775039
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
Natural超对称在LHC上的现象学研究
  • 批准号:
    11405015
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Research Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CAREER: Insertion-Based Natural Language Generation
职业:基于插入的自然语言生成
  • 批准号:
    2339766
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Studies of speech, image and natural language processing for multimodal spoken document retrieval
多模态语音文档检索的语音、图像和自然语言处理研究
  • 批准号:
    23K11216
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient and Fair Language Modelling for Natural Language Processing, investigating lightweight language modelling approaches and aiming at fairness
自然语言处理的高效公平语言建模,研究轻量级语言建模方法并以公平为目标
  • 批准号:
    2894795
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Studentship
SBIR Phase I: Sown To Grow - Measuring Growth in Trusting Relationships between Students and Educators with Natural Language Processing and Machine Learning Technologies
SBIR 第一阶段:播种成长 - 使用自然语言处理和机器学习技术衡量学生和教育工作者之间信任关系的增长
  • 批准号:
    2322340
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
  • 批准号:
    2329273
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Learning Structured Models with Natural Language Supervision
职业:利用自然语言监督学习结构化模型
  • 批准号:
    2238240
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了