Stochastic Dynamics on Energy Landscapes with Applications in Physics and Biology

能源景观的随机动力学及其在物理和生物学中的应用

基本信息

项目摘要

A large number of systems in physics and biology evolve randomly in time, and special mathematical tools are used to understand the function of these fluctuations. Models of small scale materials like nano magnets or designed meta-materials have fluctuations with spatial dependence that affect their performance. These systems require the development of tools to account for the interaction of multiple sources of noise and spatially-correlated noise to predict both likely structure and transport, as well as unlikely events that could either help or be catastrophic to the system. The mathematical advancement of this project includes utilizing these tools to find underlying mathematical mechanisms that can be used along with experimental observations, thus increasing our understanding of the physical world. This project contains a natural interdisciplinary blend of physics, biology and mathematics to train the current generation of applied mathematics students as the research field of applied mathematics grows in diversity. The investigators will continue working to increase participation in mathematics. Students have the opportunity to participate in local camps for high school girls in STEM, build mentoring networks at all levels, create inclusive and emotionally positive spaces, and use outstanding visualizations to promote mathematics.The applications in this project provide an arena for advancing the mathematical tools for analyzing large and infinite dimensional stochastic systems. These tools center around bringing a system into the energy landscape framework of Langevin systems and further utilizing this framework to explain the system’s behavior. Specifically, this project answers open problems regarding stochastic coarse-graining and large deviations. Rather than standard averaging to remove the noise, investigators provide methods to retain both a deterministic term and a fluctuating term to account for the interaction of multiple sources of noise, as well as derive effective equations for a global variable (energy). From the coarse-grained equations, the project offers methods to asymptotically approximate transition times between metastable states and show equivalence between different techniques on different limits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理学和生物学中的大量系统在时间上是随机演化的,人们使用特殊的数学工具来理解这些涨落的功能。小规模材料的模型,如纳米磁体或设计的超材料,会有空间相关性的波动,这会影响它们的性能。这些系统需要开发工具来考虑多个噪声源和空间相关噪声源的相互作用,以预测可能的结构和运输,以及可能有助于或对系统造成灾难性影响的不太可能的事件。这个项目的数学进步包括利用这些工具找到潜在的数学机制,这些机制可以与实验观察一起使用,从而增加我们对物理世界的理解。该项目包含物理、生物和数学的自然交叉学科融合,以培养当代应用数学学生,因为应用数学的研究领域日益多样化。研究人员将继续努力增加对数学的参与。学生们有机会参加STEM的高中女生当地夏令营,建立各级的指导网络,创造包容的和积极的情感空间,并使用出色的可视化来促进数学。该项目的应用为发展分析大型和无限维随机系统的数学工具提供了一个舞台。这些工具的核心是将一个系统纳入朗之万系统的能源格局框架,并进一步利用这个框架来解释系统的行为。具体地说,这个项目回答了关于随机粗粒化和大偏差的公开问题。研究人员提供了既保留确定性项又保留波动项的方法,以解释多个噪声源的相互作用,并推导出全局变量(能量)的有效方程,而不是通过标准平均来消除噪声。从粗粒度方程出发,该项目提供了渐近近似亚稳态之间的转变时间的方法,并在不同限制上显示了不同技术之间的等价性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Newhall其他文献

Case Report of Traumatic Rib Fracture in Mammoth from Frenchman Hills–Tonnemaker Mammoth Site, Grant County, Washington
华盛顿格兰特县法国人山-托尼梅克猛犸象遗址猛犸象外伤性肋骨骨折病例报告
  • DOI:
    10.3955/046.095.0310
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    G. V. Last;Katherine Newhall;Rosalie L. Faubion;N. Mara;Bax R. Barton
  • 通讯作者:
    Bax R. Barton

Katherine Newhall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Newhall', 18)}}的其他基金

DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323342
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Network Representations of Energy Landscapes in Soft-Sphere Models
软球模型中能源景观的统计网络表示
  • 批准号:
    1816394
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
  • 批准号:
    EP/Z001250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dissecting the Governance Dynamics of Energy Decarbonisation Decision-Making
剖析能源脱碳决策的治理动态
  • 批准号:
    2893840
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
  • 批准号:
    2310243
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dynamics of high-energy nuclear collisions based on core-corona picture and transport properties of QGP
基于核日冕图和QGP输运特性的高能核碰撞动力学
  • 批准号:
    23K03395
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of plasma dynamics with non-thermal energy cascade under intense laser irradiation
强激光辐照下非热能级联等离子体动力学研究
  • 批准号:
    23K03354
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Modeling Energy Dynamics and Thermal Transport in Molecules
分子中的能量动力学和热传输建模
  • 批准号:
    2245240
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Dynamics of Vibrational Energy Transfer and Redistribution in Interfacial Water
职业:界面水中振动能量转移和重新分布的超快动力学
  • 批准号:
    2238904
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Life, Energy, Dynamics and Dark Matter - Exploring X-rays from the Outer Planets
生命、能量、动力学和暗物质 - 探索来自外行星的 X 射线
  • 批准号:
    ST/W003449/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了