Life, Energy, Dynamics and Dark Matter - Exploring X-rays from the Outer Planets

生命、能量、动力学和暗物质 - 探索来自外行星的 X 射线

基本信息

  • 批准号:
    ST/W003449/1
  • 负责人:
  • 金额:
    $ 73.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The outer solar system is truly a place of wonders: spectacular auroral displays, so energetic that they could power Human civilization; moons with global sub-surface water oceans - potentially perfect environments for life; magnetic bubbles ('magnetospheres') that are the largest coherent structures in the solar system; intense radiation belts filled with particles so energetic that they travel at close to the speed of light; iconic glistening rings extending 20 times the diameter of Earth into space to encircle their gaseous hosts. How the cosmos creates these marvels and what processes govern them is at the heart of solar system science and this research.Historically, NASA and ESA's flagship X-ray observatories, Chandra and XMM-Newton, have been widely used to study the unimaginably energetic or large (black holes, neutron stars or the gas that flows between galaxies). However, X-ray observatories also provide invaluable and under-utilised insights into planetary bodies. My research aims to ensure that we fully utilise the diverse range of X-ray capabilities to study the outer planets.X-rays fluorescence is a process that produces 'fingerprint' signatures of atomic elements. Consequently, it is excellent for determining what atomic elements something is composed of. On Earth, X-ray fluorescence is used for everything from determining whether a piece of art is fake, to identifying lead in paint, chlorine in food and metals in cosmetics. Through the ERF, I will study X-ray fluorescence from Jupiter's moons Io, Europa, Ganymede and Callisto. This will identify which elements are most common on their icy surfaces, distinguishing between different salts in Europa's ocean to identify what conditions are available there for potential life.Europa orbits Jupiter within Jupiter's magnetosphere. This vast magnetic cavity around the planet forms through the combination of Jupiter's rapid-rotation, strong magnetic field, and the constant injections of plasma (ionised particles) from the volcanoes on Jupiter's moon, Io. Plasma makes up 99% of the observed Universe. Understanding what processes govern the behaviours of plasmas is therefore critical to understanding the matter we observe across the cosmos. I will use X-ray observations in tandem with measurements by spacecraft in orbit at the planets to study these fundamental plasma processes in several ways: 1. exploring Jupiter's dancing auroral displays to probe the flows of particles and the processes that control them2. analysing X-ray images of the intense radiation belts to determine how they change over time and what processes trigger these changes3. calculating the X-ray emissions along the boundary between the magnetospheres of Jupiter, Saturn, Uranus and Neptune and the solar wind, laying foundations to take videos of this boundary, to study the global relationship between each planet and its surrounding space envrionment (the solar wind).The study of exoplanets has shown that Ice Giants are amongst the most common type of planet in the Universe. However, our local Ice Giants, Uranus and Neptune, are very poorly understood. The rapid flybys of the Voyager spacecraft in the 1980s are the only visit we have ever made to either planet. Without any near-term plans to visit these planets, we have to study them through telescopes at Earth. I will seek to acquire new X-ray observing time for Uranus. This will enable us to explore many of the exciting hints suggested by previous observations, testing for the presence of: sparkling X-ray aurorae, the X-ray glow of the rings and potential fluorescence from the atmosphere.Through these diverse projects, the research programme will usher in a revolution in the uses of X-ray observations for the outer solar system, founding new research fields and leveraging the X-ray waveband to provide unique insights into the mysterious and wonderous worlds in the outer regions of our solar system.
外太阳系确实是一个充满奇迹的地方:壮观的极光显示,如此充满活力,它们可以为人类文明提供动力;卫星与全球地下水海洋-潜在的生命完美环境;磁泡(“磁层”),是太阳系中最大的相干结构;强烈的辐射带充满了粒子,它们的能量如此之高,以至于它们以接近光速的速度传播;标志性的闪闪发光的光环延伸到太空中,直径是地球的20倍,环绕着它们的气态宿主。宇宙如何创造这些奇迹以及是什么过程控制它们是太阳系科学和这项研究的核心。历史上,美国宇航局和欧空局的旗舰X射线天文台钱德拉和XMM-牛顿,已被广泛用于研究不可比拟的能量或大(黑洞,中子星或星系之间流动的气体)。然而,X射线天文台也提供了对行星体的宝贵和未充分利用的见解。我的研究旨在确保我们充分利用X射线的各种能力来研究外行星。X射线荧光是一种产生原子元素“指纹”特征的过程。因此,它非常适合确定某个元素是由什么原子组成的。在地球上,X射线荧光被用于从确定一件艺术品是否是假的,到识别油漆中的铅,食品中的氯和化妆品中的金属。通过ERF,我将研究来自木星卫星木卫一,木卫二,木卫三和木卫四的X射线荧光。这将确定哪些元素在其冰冷的表面上最常见,区分木卫二海洋中的不同盐,以确定那里有什么条件适合潜在的生命。木卫二在木星的磁层内绕木星运行。木星周围巨大的磁腔是通过木星的快速旋转,强大的磁场和木星卫星木卫一上火山的等离子体(电离粒子)的不断注入而形成的。等离子体构成了观测到的宇宙的99%。因此,了解什么过程控制着等离子体的行为,对于理解我们在宇宙中观察到的物质至关重要。我将使用X射线观测与在行星轨道上的航天器测量相结合,以几种方式研究这些基本的等离子体过程:1。探索木星舞动的极光,以探测粒子流和控制它们的过程。分析强辐射带的X射线图像,以确定它们如何随时间变化,以及是什么过程引发了这些变化。计算木星、土星、天王星和海王星磁层与太阳风之间的边界沿着的X射线辐射,为拍摄这一边界的视频奠定基础,以研究每个行星与其周围空间环境(太阳风)之间的全球关系。对系外行星的研究表明,冰巨人是宇宙中最常见的行星类型之一。然而,我们对当地的冰巨人天王星和海王星的了解非常少。20世纪80年代旅行者号飞船的快速飞越是我们对这两颗行星的唯一访问。如果没有任何近期计划访问这些行星,我们必须通过地球上的望远镜来研究它们。我将寻求获得新的天王星X射线观测时间。这将使我们能够探索许多令人兴奋的提示建议由以前的观察,测试的存在:通过这些不同的项目,研究方案将在利用X射线观测外太阳系方面带来一场革命,建立新的研究领域,并利用X射线波段提供独特的见解,神秘和奇妙的世界在我们的太阳系的外部区域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Survey of Magnetic Field Line Curvature in Jovian Dawn Magnetodisc
  • DOI:
    10.1029/2023gl106971
  • 发表时间:
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    W. D. Gu;Z. Yao;Y. Wei;T. Qin;B. Zhang;Y. Xu;W. Dunn;P. Delamere;Y. N. Chen
  • 通讯作者:
    W. D. Gu;Z. Yao;Y. Wei;T. Qin;B. Zhang;Y. Xu;W. Dunn;P. Delamere;Y. N. Chen
Exploring Fundamental Particle Acceleration and Loss Processes in Heliophysics through an Orbiting X-ray Instrument in the Jovian System
通过木星系统中的轨道 X 射线仪器探索太阳物理学中的基本粒子加速和损失过程
  • DOI:
    10.3847/25c2cfeb.e6522cc4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dunn W
  • 通讯作者:
    Dunn W
Comparing Jupiter's equatorial X-ray emissions with solar X-ray flux over 19 years of the Chandra mission
钱德拉任务 19 年来木星赤道 X 射线发射与太阳 X 射线通量的比较
  • DOI:
    10.1002/essoar.10512649.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McEntee S
  • 通讯作者:
    McEntee S
Variation of the Jovian Magnetopause Under Constant Solar Wind Conditions: Significance of Magnetodisc Dynamics
恒定太阳风条件下木星磁层顶的变化:磁盘动力学的意义
Hourly Periodic Variations of Ultralow-Frequency (ULF) Waves in Jupiter's Magnetosheath
木星磁鞘中超低频(ULF)波每小时的周期性变化
  • DOI:
    10.1029/2022je007625
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gu W
  • 通讯作者:
    Gu W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Dunn其他文献

Ultralow‐Frequency Waves in Driving Jovian Aurorae Revealed by Observations From HST and Juno
  • DOI:
    10.1029/2020gl091579
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Dong‐Xiao Pan;Zhong‐Hua Yao;Harry Manners;William Dunn;Bertrand Bonfond;Denis Grodent;Bin‐Zheng Zhang;Rui‐Long Guo;Yong Wei
  • 通讯作者:
    Yong Wei
Leukocyte adhesion: High-speed cells with ABS
白细胞粘附:带 ABS 的高速细胞
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    P. van der Merwe;William Dunn
  • 通讯作者:
    William Dunn
Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks (COMPASS)
磁层粒子加速、源和汇的综合观测 (COMPASS)
  • DOI:
    10.3847/25c2cfeb.34b800e1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    George Clark;P. Kollmann;James Kinnison;Dan Kelly;Wen Li;L. Blum;Robert Marshall;D. Turner;Aleksandr Ukhorskiy;Ian J. Cohen;B. Mauk;E. Roussos;Q. Nénon;H. Smith;G. Berland;William Dunn;Ralph P. Kraft;G. Hospodarsky;P. Williams;Xin Wu;Aleksandr (Sasha) Drozdov;Paul O’Brian;M. Looper;Xinlin Li;A. Sciola;K. Sorathia;A. Sicard;Andy Santo;Meagan Leary;Amanda Haapala;F. Siddique;Michelle Donegan;Benjamin Clare;Derek Emmell;Kim Slack;John H. Wirzburger;Daniel Sepulveda;L. Roufberg;Jacklyn Perry;J. Schellhase;Darrius D. Pergosky;Elisabeth Able;Michael O’Neill;Cristina Gernandes;Debarati Chattopadhyay;Samuel Bibelhauser;Seth Kijewski;Joe Pulkowski;Mike Furrow;R. Desai
  • 通讯作者:
    R. Desai
Capabilities of a lobster eye telescope in the outer solar system
外太阳系龙虾眼望远镜的能力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Feldman;William Dunn;Simon Lindsay;A. Martindale
  • 通讯作者:
    A. Martindale
Edinburgh Research Explorer Attachment of DNA to the nucleoskeleton of HeLa cells examined using physiological conditions
爱丁堡研究探索者使用生理条件检查 DNA 与 HeLa 细胞核骨架的附着
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Jackson;P. Dickinson;P. Cook;William Dunn
  • 通讯作者:
    William Dunn

William Dunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Dunn', 18)}}的其他基金

Molecular Characterization of Autophagy
自噬的分子表征
  • 批准号:
    9817002
  • 财政年份:
    1999
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
Radio-Optic Method for Measuring Relative Motion
测量相对运动的射电光学方法
  • 批准号:
    9460825
  • 财政年份:
    1995
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
A Pattern-Deviation Scanner for Precise Measurement of Internal Component Locations
用于精确测量内部元件位置的模式偏差扫描仪
  • 批准号:
    9261267
  • 财政年份:
    1993
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
SBIR:Investigation of the Inverse Monte Carlo Method and itsApplication to Nuclear Gauging
SBIR:逆蒙特卡罗方法的研究及其在核测量中的应用
  • 批准号:
    8560926
  • 财政年份:
    1986
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
Multidimensional Radiation Transport Calculations
多维辐射传输计算
  • 批准号:
    8360797
  • 财政年份:
    1984
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
1981 Nsf Postdoctoral Fellowship Program
1981 NSF博士后奖学金计划
  • 批准号:
    8166053
  • 财政年份:
    1981
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Fellowship Award
Equipment For Nuclear Reactor Tangential Beam Tube Research
核反应堆切向束管研究设备
  • 批准号:
    7822111
  • 财政年份:
    1979
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
  • 批准号:
    EP/Z001250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Fellowship
Stochastic Dynamics on Energy Landscapes with Applications in Physics and Biology
能源景观的随机动力学及其在物理和生物学中的应用
  • 批准号:
    2307297
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
  • 批准号:
    2310243
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Continuing Grant
An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dissecting the Governance Dynamics of Energy Decarbonisation Decision-Making
剖析能源脱碳决策的治理动态
  • 批准号:
    2893840
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Studentship
Dynamics of high-energy nuclear collisions based on core-corona picture and transport properties of QGP
基于核日冕图和QGP输运特性的高能核碰撞动力学
  • 批准号:
    23K03395
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of plasma dynamics with non-thermal energy cascade under intense laser irradiation
强激光辐照下非热能级联等离子体动力学研究
  • 批准号:
    23K03354
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
Modeling Energy Dynamics and Thermal Transport in Molecules
分子中的能量动力学和热传输建模
  • 批准号:
    2245240
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Dynamics of Vibrational Energy Transfer and Redistribution in Interfacial Water
职业:界面水中振动能量转移和重新分布的超快动力学
  • 批准号:
    2238904
  • 财政年份:
    2023
  • 资助金额:
    $ 73.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了