Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
基本信息
- 批准号:2012414
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modeling in industry, engineering, and domain sciences often involves various degrees of randomness and uncertainty effects. A large and important class of models incorporating uncertainty are random and/or stochastic partial differential equations (SPDEs). This research project will address several important SPDEs and aims to develop improved numerical methods that are stable, accurate, and efficient, with focus on nonlinear problems and adequate sampling methods. The resulting numerical methods and algorithms are anticipated to provide much-needed tools for computational modeling of systems described mathematically by SPDEs from many scientific, engineering, and industry applications such as materials science, fluid and quantum mechanics, wave scattering, mathematical finance, and stochastic optimal control. Moreover, the project will train graduate students through involvement in the research, helping them develop applied and computational mathematics knowledge and skills needed for successful careers in either academia or industry. This research project develops advanced numerical methods and algorithms for general nonlinear random and/or stochastic partial differential equations (R/SPDEs). Current approaches for solving R/SPDEs face considerable challenges at large scales: the sheer amount of computation involved in such systems prevents the use of high spatial and temporal resolutions, and solver optimization is often not considered. In the meantime, R/SPDEs become more complex as additional nonlinearities and sources of noise are considered. This presents a big challenge but also a great opportunity to the numerical PDE community. The project focuses on developing efficient numerical methods and algorithms for solving nonlinear SPDEs that arise from various scientific and engineering applications, including stochastic Allen-Cahn and Cahn-Hilliard equations and stochastic nonlinear wave and Schrodinger equations. The numerical methods under development will aim to feature stability with respect to mesh sizes and physical parameters, structure-preserving properties, and amenability to fast and parallelizable implementation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工业、工程和领域科学中的建模通常涉及不同程度的随机性和不确定性效应。 包含不确定性的一类重要模型是随机和/或随机偏微分方程(SPDE)。该研究项目将解决几个重要的SPDE,旨在开发稳定,准确和高效的改进数值方法,重点关注非线性问题和适当的采样方法。 由此产生的数值方法和算法预计将提供急需的工具,从许多科学,工程和工业应用,如材料科学,流体和量子力学,波散射,数学金融和随机最优控制的SPDE数学描述的系统的计算建模。此外,该项目将通过参与研究来培训研究生,帮助他们发展在学术界或工业界成功职业所需的应用和计算数学知识和技能。该研究项目为一般非线性随机和/或随机偏微分方程(R/SPDEs)开发先进的数值方法和算法。目前解决R/SPDE的方法在大规模上面临相当大的挑战:此类系统中涉及的计算量庞大,无法使用高空间和时间分辨率,并且通常不考虑求解器优化。与此同时,R/SPDE变得更加复杂,因为考虑了额外的非线性和噪声源。这对数值PDE社区来说是一个巨大的挑战,但也是一个巨大的机会。该项目的重点是开发有效的数值方法和算法,用于解决各种科学和工程应用中出现的非线性SPDE,包括随机Allen-Cahn和Cahn-Hilliard方程以及随机非线性波和薛定谔方程。正在开发的数值方法将致力于网格尺寸和物理参数的稳定性、结构保持特性以及快速和并行实施的适应性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new theory of fractional differential calculus
- DOI:10.1142/s0219530521500019
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Xiaobing H. Feng;Mitchell Sutton
- 通讯作者:Xiaobing H. Feng;Mitchell Sutton
An Efficient Iterative Method for Solving Parameter-Dependent and Random Convection–Diffusion Problems
解决参数相关和随机对流扩散问题的有效迭代方法
- DOI:10.1007/s10915-021-01737-z
- 发表时间:2021-05
- 期刊:
- 影响因子:2.5
- 作者:Xiaobing Feng;Yan Luo;Liet Vo;Zhu Wang
- 通讯作者:Zhu Wang
Analysis of Fully Discrete Mixed Finite Element Methods for Time-dependent Stochastic Stokes Equations with Multiplicative Noise
具有乘性噪声的时变随机斯托克斯方程的全离散混合有限元方法分析
- DOI:10.1007/s10915-021-01546-4
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Feng, Xiaobing;Qiu, Hailong
- 通讯作者:Qiu, Hailong
Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise
具有线性乘性噪声的随机非线性薛定谔方程的稳定数值方法
- DOI:10.3934/dcdss.2021071
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Feng, Xiaobing;Ma, Shu
- 通讯作者:Ma, Shu
Strong Convergence of a Fully Discrete Finite Element Method for a Class of Semilinear Stochastic Partial Differential Equations with Multiplicative Noise
一类带有乘性噪声的半线性随机偏微分方程的全离散有限元方法的强收敛性
- DOI:10.4208/jcm.2003-m2019-0250
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:sci, global
- 通讯作者:sci, global
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobing Feng其他文献
DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
DNNTune:移动云计算 DNN 模型的自动基准测试
- DOI:
10.1145/3368305 - 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
Chunwei Xia;Jiacheng Zhao;Huimin Cui;Xiaobing Feng;Jingling Xue - 通讯作者:
Jingling Xue
Associations of urinary 1,3-butadiene metabolite with glucose homeostasis, prediabetes, and diabetes in the US general population: Role of alkaline phosphatase.
美国普通人群尿 1,3-丁二烯代谢物与葡萄糖稳态、糖尿病前期和糖尿病的关联:碱性磷酸酶的作用。
- DOI:
10.1016/j.envres.2023.115355 - 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Ruyi Liang;Xiaobing Feng;Da Shi;Linling Yu;Meng Yang;Min Zhou;Yongfang Zhang;Bin Wang;Weihong Chen - 通讯作者:
Weihong Chen
Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction
基于深度相机的流体重建及其固液相互作用
- DOI:
10.1145/3328756.3328761 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiaobing Feng;Juan Zhang;Dengming Zhu;Min Shi;Zhaoqi Wang - 通讯作者:
Zhaoqi Wang
CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and Enhancement
CloudRaid:通过日志挖掘和增强检测分布式并发错误
- DOI:
10.1109/tse.2020.2999364 - 发表时间:
2022-02 - 期刊:
- 影响因子:7.4
- 作者:
Jie Lu;Feng Li;Chen Liu;Lian Li;Xiaobing Feng;Jingling Xue - 通讯作者:
Jingling Xue
Cascade Wide Activation Multi-Scale Networks for Single Image Super-Resolution
用于单图像超分辨率的级联宽激活多尺度网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yiwei Zhang;He Huang;Qingliang Chen;Xu Zhang;Jianxing Liang;H. Yin;Xiaobing Feng;Shasha Wang - 通讯作者:
Shasha Wang
Xiaobing Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobing Feng', 18)}}的其他基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:
1620168 - 财政年份:2016
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
- 批准号:
1318486 - 财政年份:2013
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
- 批准号:
1203237 - 财政年份:2012
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
- 批准号:
1016173 - 财政年份:2010
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
- 批准号:
0710831 - 财政年份:2007
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
- 批准号:
0715713 - 财政年份:2007
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
- 批准号:
0410266 - 财政年份:2004
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
- 批准号:
0107159 - 财政年份:2001
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant