I-Corps: Scalable Artificial Intelligence-Supported Flood Resilience Assessment

I-Corps:可扩展的人工智能支持的防洪评估

基本信息

  • 批准号:
    2308692
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a scalable, flood resilience software framework to provide fast, accurate, and valid flood damage prediction under various flooding scenarios and at multiple geographic scales. The services provided by the proposed cyberinfrastructure platform may provide scalable, dynamic, intelligent, building-level flood resilience assessment. The proposed technology significantly reduces the workload of measuring house-level lowest floor elevation and largely facilitates community-level flood damage assessment by providing services of on-the-fly damage predictions with user-defined scenarios. One benefit of the successful deployment of the proposed technology may be to help communities quickly explore the spatial distribution of flood risks and test how flood events with varying intensities affect individual houses as well as the whole community. Such knowledge is expected to further benefit government officials, first responders, and resource allocators. The knowledge will also help promote flood awareness at the regional and national levels.This I-Corps project is based on the development of an Artificial Intelligence (AI)-supported geospatial cyberinfrastructure platform for flood damage prediction. Existing community-level flood resilience and adaptation are often investigated in an unscalable manner, making the investigation workflow community-specific with low transferability to other communities or to large geographical scales. In comparison, the proposed technology achieves accurate, fast, and low-cost flood resilience assessment by 1) deriving fine-grained, building-level flood exposure using United States national building footprints and cross-referenced floodplain products, 2) proposing a scalable workflow of lowest floor elevation retrieval, taking advantage of street view images, 3) developing a flood damage simulation paradigm incorporating building characteristics and simulated flood intensity, and 4) designing an online portal for scalable flood resilience assessment, with the capability of interactive updates, flood scenario selection, location queries, and report generation. The proposed AI-supported cyberinfrastructure and flood damage simulation framework are expected to renovate and transform large-scale flood damage assessment and flood situational awareness communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发一个可扩展的洪水恢复力软件框架,以在各种洪水场景和多个地理尺度下提供快速,准确和有效的洪水损失预测。拟议的网络基础设施平台提供的服务可以提供可扩展的、动态的、智能的、建筑物级的洪水复原力评估。所提出的技术大大减少了测量房屋水平最低楼层标高的工作量,并通过提供用户定义场景的即时损失预测服务,在很大程度上促进了社区水平的洪水损失评估。成功部署拟议技术的一个好处可能是帮助社区快速探索洪水风险的空间分布,并测试不同强度的洪水事件如何影响个别房屋以及整个社区。这些知识预计将进一步造福政府官员、第一反应者和资源分配者。 这些知识还将有助于提高区域和国家层面的洪水意识。这个I-Corps项目是基于开发一个人工智能支持的地理空间网络基础设施平台,用于洪水灾害预测。 现有的社区一级洪水复原力和适应能力往往是以不可扩展的方式进行调查的,这使得调查工作流程具有社区特异性,难以转移到其他社区或大的地理范围。相比之下,所提出的技术通过以下方式实现了准确、快速和低成本的洪水恢复力评估:1)使用美国国家建筑物足迹和交叉引用的洪泛区产品导出细粒度的建筑物级洪水暴露,2)提出最低楼层高程检索的可扩展工作流程,利用街景图像,3)开发一个洪水破坏模拟范例,结合建筑物特征和模拟洪水强度,以及4)设计一个可扩展的洪水恢复力评估的在线门户网站,具有交互式更新,洪水情景选择,位置查询和报告生成。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Huang其他文献

PALVO: visual odometry based on panoramic annular lens.
PALVO:基于全景环形镜头的视觉里程计。
  • DOI:
    10.1364/oe.27.024481
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hao Chen;Kaiwei Wang;Weijian Hu;Kailun Yang;Ruiqi Cheng;Xiao Huang;J. Bai
  • 通讯作者:
    J. Bai
Urban-regional disparities in mental health signals in Australia during the COVID-19 pandemic: a study via Twitter data and machine learning models
COVID-19 大流行期间澳大利亚心理健康信号的城市地区差异:通过 Twitter 数据和机器学习模型进行的研究
Boosted p-Values for High-Dimensional Vector Autoregression
  • DOI:
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Huang
  • 通讯作者:
    Xiao Huang
Multi-Joint Active Collision Avoidance for Robot Based on Depth Visual Perception
基于深度视觉感知的机器人多关节主动避碰
  • DOI:
    10.1109/jas.2022.105674
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Li;Xingfang Wang;Xiao Huang;Yifan Ma;Zhihong Jiang
  • 通讯作者:
    Zhihong Jiang
Applications of Integrated Gradients in Credit Risk Modeling
积分梯度在信用风险建模中的应用

Xiao Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
  • 批准号:
    10576015
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
  • 批准号:
    2229092
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    2324651
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator - Track C: SQAI: Scalable Quantum Artificial Intelligence for Discovery
NSF 融合加速器 - 轨道 C:SQAI:用于发现的可扩展量子人工智能
  • 批准号:
    2040667
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    1845331
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Scalable fabrication of ANT-functionalised 3D CNT microstructures for light-responsive artificial cilia
用于光响应人工纤毛的 ANT 功能化 3D CNT 微结构的可扩展制造
  • 批准号:
    2338185
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
Collaborative Research: Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference (SCAILFIN)
合作研究:用于人工智能和似然自由推理的可扩展网络基础设施 (SCAILFIN)
  • 批准号:
    1841448
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference (SCAILFIN)
合作研究:用于人工智能和似然自由推理的可扩展网络基础设施 (SCAILFIN)
  • 批准号:
    1841456
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable CyberInfrastructure for Artificial Intelligence and Likelihood Free Inference (SCAILFIN)
合作研究:用于人工智能和似然自由推理的可扩展网络基础设施 (SCAILFIN)
  • 批准号:
    1841471
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Building a scalable WILDlife monitoring system by integrating remote camera sampling and artificial INTELligence with Essential Biodiversity Variables
通过将远程摄像头采样和人工智能与基本生物多样性变量相结合,构建可扩展的野生动物监测系统
  • 批准号:
    531873058
  • 财政年份:
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了