NSF Convergence Accelerator - Track C: SQAI: Scalable Quantum Artificial Intelligence for Discovery

NSF 融合加速器 - 轨道 C:SQAI:用于发现的可扩展量子人工智能

基本信息

  • 批准号:
    2040667
  • 负责人:
  • 金额:
    $ 96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. This grant will benefit society by compressing the pharmaceutical discovery timeline and reducing cost. This would have societal impacts both economically and in human health. A new branch of artificial intelligence, Generative Adversarial Networks (GAN), shows promise for exploring a large chemical space and generating novel pharmaceutical candidates targeted for a certain disease. Quantum GAN (QGAN) has emerged as a path to accelerate classical GANs. This project will create an experimental quantum GAN framework to explore chemical compounds on Noisy Intermediate Scale Quantum (NISQ) computers. This will yield a new discovery-based framework, Scalable Quantum Artificial Intelligence (SQAI) which could be employed for other applications.This Convergence Accelerator team will answer fundamental questions in the context of drug discovery such as: (i) How to exploit quantum advantage to the fullest for drug discovery using NISQ-era computers? Should we use quantum resources for search, discrimination and reinforcement of reward or allocate them fully for search and rely on classical paradigm for regular tasks? (ii) Does a particular molecular representation benefit NISQ-era computers? (iii) Can we enhance the quantum ansatz in QGAN to explore pharmacologically relevant areas of chemical space? (iv) What is the implication of noise on QGAN during training and generation? (v) Are there other material systems that will provide noise immunity to the existing noise-prone qubits? (vi) What kind of flexibility can we offer to the users in exploring quantum computing for their discovery application? The main tasks are focused on developing a software toolchain to bridge the gap between quantum AI algorithms and hardware, exploring drug discovery using NISQ computers, and preparing a quantum smart and diverse workforce. Outreach to K-12 teachers will include a professional development workshop and curricular materials related to introductory quantum computing content.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,解决国家重要性的挑战,并将在不久的将来产生对社会有价值的可交付成果。这笔拨款将通过压缩药物发现时间表和降低成本来造福社会。这将对经济和人类健康产生社会影响。人工智能的一个新分支,生成对抗网络(GAN),有望探索一个大的化学空间,并产生针对某种疾病的新型候选药物。量子GAN (QGAN)作为加速经典GAN的一种途径而出现。该项目将创建一个实验性量子GAN框架,以探索噪声中尺度量子(NISQ)计算机上的化合物。这将产生一个新的基于发现的框架,可扩展量子人工智能(SQAI),可用于其他应用。这个融合加速器团队将回答药物发现背景下的基本问题,例如:(i)如何利用nisq时代的计算机充分利用量子优势进行药物发现?我们应该将量子资源用于搜索、辨别和奖励强化,还是将其全部分配给搜索,并依赖经典范式来完成常规任务?(ii)特定的分子表示是否有利于nisq时代的计算机?(三)能否加强QGAN中的量子分析,探索化学空间中与药理学相关的领域?(iv)在训练和生成过程中噪声对QGAN的影响是什么?(v)是否有其他材料系统可以为现有易受噪音影响的量子位提供抗噪音能力?(vi)在探索量子计算的发现应用方面,我们能为用户提供怎样的灵活性?主要任务集中在开发软件工具链,以弥合量子人工智能算法和硬件之间的差距,使用NISQ计算机探索药物发现,并准备量子智能和多样化的劳动力。对K-12教师的拓展将包括一个专业发展研讨会和与量子计算入门内容相关的课程材料。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Activation of Disulfide Redox Switch in REDD1 Promotes Oxidative Stress Under Hyperglycemic Conditions.
  • DOI:
    10.2337/db22-0355
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
  • 通讯作者:
Split Compilation for Security of Quantum Circuits
量子电路安全的分割编译
  • DOI:
    10.1109/iccad51958.2021.9643478
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saki, Abdullah Ash;Suresh, Aakarshitha;Topaloglu, Rasit Onur;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
Quantum Computing at the Intersection of Engineering, Technology, Science, and Societal Need: Design of NGSS-aligned Quantum Drug Discovery Lessons for Middle School Students
工程、技术、科学和社会需求交叉点的量子计算:为中学生设计符合 NGSS 的量子药物发现课程
Trainable PQC-Based QRAM for Quantum Storage
用于量子存储的可训练的基于 PQC 的 QRAM
  • DOI:
    10.1109/access.2023.3278600
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Phalak, Koustubh;Li, Junde;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
A Survey and Tutorial on Security and Resilience of Quantum Computing
量子计算安全性和弹性的调查和教程
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdullah Ash Saki, Mahabubul Alam
  • 通讯作者:
    Abdullah Ash Saki, Mahabubul Alam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swaroop Ghosh其他文献

Trustworthy Computing using Untrusted Cloud-Based Quantum Hardware
使用不可信的基于云的量子硬件进行可信计算
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Upadhyay;R. Topaloglu;Swaroop Ghosh
  • 通讯作者:
    Swaroop Ghosh
Trojan Attacks on Variational Quantum Circuits and Countermeasures
变分量子电路的木马攻击及对策
A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded DRAM in 22 nm Tri-Gate CMOS Technology
采用 22 nm 三栅 CMOS 技术的 1 Gb 2 GHz 128 GB/s 带宽嵌入式 DRAM
  • DOI:
    10.1109/jssc.2014.2353793
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    F. Hamzaoglu;U. Arslan;N. Bisnik;Swaroop Ghosh;M. Lal;N. Lindert;Mesut Meterelliyoz;R. Osborne;Joodong Park;S. Tomishima;Yih Wang;Kevin Zhang
  • 通讯作者:
    Kevin Zhang
Optimization of Quantum Read-Only Memory Circuits
量子只读存储器电路的优化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koustubh Phalak;M. Alam;Abdullah Ash;R. Topaloglu;Swaroop Ghosh
  • 通讯作者:
    Swaroop Ghosh
Guest Editorial Emerging Memories - Technology, Architecture and Applications (First Issue)
客座社论新兴记忆 - 技术、架构和应用(第一期)

Swaroop Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swaroop Ghosh', 18)}}的其他基金

SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing
SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全
  • 批准号:
    2129675
  • 财政年份:
    2022
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
FET:Medium: Drug discovery using quantum machine learning
FET:中:使用量子机器学习进行药物发现
  • 批准号:
    2210963
  • 财政年份:
    2022
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: EDU: A Curriculum for Quantum Security and Trust
SaTC:EDU:量子安全和信任课程
  • 批准号:
    2113839
  • 财政年份:
    2021
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Small: Assuring Security and Privacy of Emerging Non-Volatile Memories
SaTC:STARSS:小型:确保新兴非易失性存储器的安全性和隐私
  • 批准号:
    1814710
  • 财政年份:
    2018
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: EDU: CyCAD: A Virtual Platform for Cybersecurity Curriculum on Analog Design
SaTC:EDU:CyCAD:模拟设计网络安全课程虚拟平台
  • 批准号:
    1821766
  • 财政年份:
    2018
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
  • 批准号:
    1718474
  • 财政年份:
    2017
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: EDU: Advancing Cybersecurity Education through Self-Learning Cybersecurity Training Kit
SaTC:EDU:通过自学网络安全培训套件推进网络安全教育
  • 批准号:
    1723687
  • 财政年份:
    2017
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1722557
  • 财政年份:
    2016
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1441757
  • 财政年份:
    2014
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了