Robustness and Optimality of Estimation and Testing

估计和测试的稳健性和最优性

基本信息

  • 批准号:
    2310769
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project is dedicated to tackling the challenge of data contamination in modern scientific studies through the advancement of robust estimation techniques. The primary objective is to develop innovative methods for robust high-dimensional estimation and robust nonparametric interpolation, enabling the identification of optimal procedures for different data sets with varying types of contamination. This research will yield invaluable insights into statistical inference within the realm of data science. Furthermore, its impact will extend beyond the field of statistics, reaching diverse disciplines such as genomics, biology, and social network analysis, where accurate analysis of complex data is of paramount importance. Moreover, this project places a strong emphasis on education and community outreach, fostering collaboration and inclusivity to unleash the full potential of big data for scientific discovery and understanding. The project also provides research training opportunities for graduate students. This project addresses the challenge of achieving optimal robust statistical inference in both high-dimensional and nonparametric settings. It introduces novel statistical methods that satisfy the requirements of information-theoretic optimality, computational efficiency, and robustness to contamination. The research project covers various data contamination settings, including the classical Huber model and the modern Efron's model. In the high-dimensional setting, the project encompasses multiple comparisons, robust ranking, and robust group synchronization. In the nonparametric setting, the focus is on robust function interpolation. This project recognizes the existence of different types of contamination and aims to develop optimal robust procedures that can adapt to these diverse scenarios. Moreover, the project highlights the necessity for innovative methods to effectively handle contamination in large datasets and extract meaningful insights.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于通过稳健估计技术的进步来解决现代科学研究中数据污染的挑战。主要目标是开发鲁棒高维估计和鲁棒非参数插值的创新方法,从而能够识别具有不同类型污染的不同数据集的最佳程序。这项研究将对数据科学领域的统计推断产生宝贵的见解。此外,它的影响将超出统计领域,触及基因组学、生物学和社会网络分析等不同学科,在这些学科中,对复杂数据的准确分析至关重要。此外,该项目非常重视教育和社区外展,促进合作和包容性,以释放大数据在科学发现和理解方面的全部潜力。该项目还为研究生提供研究培训机会。该项目解决了在高维和非参数设置中实现最优鲁棒统计推断的挑战。它引入了新的统计方法,满足信息论最优性、计算效率和对污染的鲁棒性的要求。该研究项目涵盖了各种数据污染设置,包括经典的Huber模型和现代的Efron模型。在高维设置中,该项目包含多个比较、可靠的排名和可靠的组同步。在非参数设置中,重点是鲁棒函数插值。该项目认识到存在不同类型的污染,并旨在开发能够适应这些不同场景的最佳稳健程序。此外,该项目强调了创新方法的必要性,以有效处理大型数据集中的污染并提取有意义的见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chao Gao其他文献

High sensitive flexible hot-film sensor for measurement of unsteady boundary layer flow
用于测量不稳定边界层流的高灵敏度柔性热膜传感器
  • DOI:
    10.1088/1361-665x/ab6ba8
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Baoyun Sun;Binghe Ma;Pengbin Wang;Jian Luo;Jinjun Deng;Chao Gao
  • 通讯作者:
    Chao Gao
Determination of Metallothionein, Malondialdehyde, and Antioxidant Enzymes in Earthworms (Eisenia fetida) Following Exposure to Chromium
接触铬后蚯蚓(赤爱胜蚓)中金属硫蛋白、丙二醛和抗氧化酶的测定
  • DOI:
    10.1080/00032719.2015.1120738
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Chao Gao;Jingbo Xu;Ji Li;Zhengtao Liu
  • 通讯作者:
    Zhengtao Liu
Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device
单有源层氧化物存储器件中互补电阻开关揭示的寄生电阻开关
  • DOI:
    10.1088/1361-6641/aa97bb
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Lisha Zhu;Wei Hu;Chao Gao;Yongcai Guo
  • 通讯作者:
    Yongcai Guo
Synthesis of a low bandgap polymer based on thieno[3,2-b]thiophene and fluorinated quinoxaline derivatives and its application in bulk heterojunction solar cells
基于噻吩并[3,2-b]噻吩和氟化喹喔啉衍生物的低带隙聚合物的合成及其在本体异质结太阳能电池中的应用
  • DOI:
    10.1016/j.synthmet.2015.05.014
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yuhua Mi;Zepei Zhang;Chao Gao;Zhongwei An
  • 通讯作者:
    Zhongwei An
Low-Resistance Porous Nanocellular MnSe Electrodes for High‐Performance All-Solid-State Battery-Supercapacitor Hybrid Devices
用于高性能全固态电池-超级电容器混合器件的低电阻多孔纳米细胞 MnSe 电极
  • DOI:
    10.1002/admt.201800074
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Haichao Tang;Yuliang Yuan;Lu Meng;Wicheng Wnag;Jianguo Lu;Yu-Jia Zeng;Tieqi Huang;Chao Gao
  • 通讯作者:
    Chao Gao

Chao Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chao Gao', 18)}}的其他基金

Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216912
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934813
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Computational and Theoretical Investigations of Variational Inference
职业:变分推理的计算和理论研究
  • 批准号:
    1847590
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Investigation of Bayes Procedures: Theory, Modeling, and Computation
贝叶斯过程的研究:理论、建模和计算
  • 批准号:
    1712957
  • 财政年份:
    2017
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似海外基金

Data-efficient Safe Control with Recovery-to-Optimality Guarantees
数据高效的安全控制,并保证恢复最佳性
  • 批准号:
    2227311
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Clarification of Minimax Optimality in Fair Regression under Demographic Parity
人口均等情况下公平回归中极小极大最优性的澄清
  • 批准号:
    23K13011
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the role of the Ccr4-Not complex in regulating codon optimality-mediated mRNA decay
研究 Ccr4-Not 复合体在调节密码子最优性介导的 mRNA 衰减中的作用
  • 批准号:
    10749985
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
  • 批准号:
    2144593
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
  • 批准号:
    10623162
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
  • 批准号:
    10330674
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
  • 批准号:
    RGPIN-2019-03926
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
  • 批准号:
    RGPIN-2016-05221
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Methodology for Learning from People: Inference, Algorithms, and Optimality
向人学习的非参数方法:推理、算法和最优性
  • 批准号:
    2210734
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了