The Ethics of Randomization in Social Science Experiments
社会科学实验中随机化的伦理
基本信息
- 批准号:2316155
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past twenty years, randomized experiments have become increasingly common in the social sciences. They involve randomly assigning research participants to an experimental group or condition. While randomization can be a measure for improving data quality, it is also a means of distributing harms and benefits of those experimental conditions to research participants and their communities. This project will examine the question of when it is ethical to determine through random assignment which participants receive a given treatment in social science experiments. By seeking to answer this question, the project will generate new tools for social scientists who are considering randomized experiments. The goal of these tools is to offer greater protections to individuals and communities that are participants in research experiments.This project consists of three research objectives. First, a set of formal (mathematical) models will be developed to analyze the welfare consequences of random and non-random methods for research participant treatment assignment. While formalization is rare in the literature on the ethics of human subjects research, these models offer a new, more direct mapping between experimental design decisions regarding how treatment is assigned and the potential ethical implications of these decisions. The research team will create models that are informed by the expected harms and benefits to research participants. The second research objective is to measure anticipated benefits and harms of social science or policy interventions by adapting and field-testing methods that reveal prospective research participants’ expectations. This testing will occur in the context of two field experiments. The tools developed through the project will enable researchers to measure expected harms and benefits when designing experiments. The final research objective takes both tools, the formal models and the measures of expected harms and benefits, to create new pedagogical materials that incorporate ethics formally into experimental research design.This project is funded through the ER2 program by the Directorate for Social, Behavioral and Economic Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年里,随机实验在社会科学中变得越来越普遍。它们包括将研究参与者随机分配到实验组或实验组。虽然随机化可以是提高数据质量的一种措施,但它也是将这些实验条件的危害和益处分配给研究参与者及其社区的一种手段。这个项目将研究在社会科学实验中,通过随机分配来决定哪些参与者接受特定的治疗在什么时候是合乎道德的。通过寻找这个问题的答案,该项目将为正在考虑随机实验的社会科学家提供新的工具。这些工具的目标是为参与研究实验的个人和社区提供更好的保护。本项目包括三个研究目标。首先,将开发一套正式(数学)模型来分析随机和非随机方法对研究参与者待遇分配的福利后果。虽然形式化在人类受试者研究的伦理文献中很少见,但这些模型在关于如何分配治疗的实验设计决策和这些决策的潜在伦理影响之间提供了一种新的,更直接的映射。研究小组将根据对研究参与者的预期危害和益处创建模型。第二个研究目标是通过适应和实地测试方法来衡量社会科学或政策干预的预期收益和危害,这些方法揭示了潜在研究参与者的期望。该测试将在两个现场实验的背景下进行。通过该项目开发的工具将使研究人员能够在设计实验时衡量预期的危害和益处。最终的研究目标需要工具、正式模型和预期危害和收益的测量,以创建新的教学材料,将伦理学正式纳入实验研究设计。该项目由社会、行为和经济科学理事会通过ER2计划资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Slough其他文献
Gathering, Evaluating, and Aggregating Social Scientific Models
收集、评估和汇总社会科学模型
- DOI:
10.2139/ssrn.4570855 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Golden;Tara Slough;Haoyu Zhai - 通讯作者:
Haoyu Zhai
Managing Federal Transfers in Brazil: Do Coalition Members Reap Benefits?
管理巴西的联邦转移支付:联盟成员是否受益?
- DOI:
10.2139/ssrn.2957599 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tara Slough;Johannes Urpelainen;Joonseok Yang - 通讯作者:
Joonseok Yang
Adoption of community monitoring improves common pool resource management across contexts
采用社区监控可以改善跨环境的公共池资源管理
- DOI:
10.1073/pnas.2015367118 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tara Slough;Daniel Rubenson;Ro’ee Levy;Francisco Alpizar Rodriguez;María Bernedo del Carpio;Mark T. Buntaine;Darin Christensen;A. Cooperman;Sabrina Eisenbarth;P. Ferraro;Louis Graham;Alexandra C. Hartman;Jacob Kopas;Sasha McLarty;Anouk S. Rigterink;Cyrus Samii;Brigitte Seim;Johannes Urpelainen;Bing Zhang - 通讯作者:
Bing Zhang
External Validity and Meta‐Analysis
外部有效性和荟萃分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.2
- 作者:
Tara Slough;Scott A. Tyson - 通讯作者:
Scott A. Tyson
Tara Slough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Plasma proteomic biomarkers of aortic stenosis: A Mendelian randomization study.
主动脉瓣狭窄的血浆蛋白质组生物标志物:孟德尔随机研究。
- 批准号:
495590 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
CAREER: Advances in Randomization Inference for Causal Effects: Heterogeneity, Sensitivity, and Complexity
职业:因果效应随机推理的进展:异质性、敏感性和复杂性
- 批准号:
2238128 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
CAREER: Advances in Randomization Inference for Causal Effects: Heterogeneity, Sensitivity, and Complexity
职业:因果效应随机推理的进展:异质性、敏感性和复杂性
- 批准号:
2400961 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Mendelian randomization for modern data: Integrating data resources to improve accuracy of causal estimates.
现代数据的孟德尔随机化:整合数据资源以提高因果估计的准确性。
- 批准号:
10716241 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
A comprehensive Mendelian Randomization on the causal pathway from psychological traits to all-cause mortality
从心理特征到全因死亡率的因果路径的全面孟德尔随机化
- 批准号:
22H03354 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an Assignment Randomization Program to Improve Student Performance
制定作业随机化计划以提高学生表现
- 批准号:
22K02932 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant