Natural and Artificial Chlorosomal Light-Harvesting Antenna: Relationship between the Supramolecular Organisation and the Properties of the Electronic Excitations.

天然和人造染色体光捕获天线:超分子组织与电子激发特性之间的关系。

基本信息

项目摘要

The success of photosynthesis has inspired many researchers to study organic matter for solar energy conversion. However, a simple order-of-magnitude estimate reveals that under optimum conditions a typical organic molecule would absorb only a few photons per second. Hence, employing organic matter for any kind of solar driven energy production requires an efficient light-harvesting apparatus - an antenna - for collecting as many photons as possible. One of the most efficient antenna systems found in nature is that of the green-sulphur bacteria, which thrive photosynthetically under extremely low illumination conditions. There the light is absorbed in supramolecular arrangements of bacteriochlorophyll molecules that are referred to as chlorosomes. Unfortunately, chlorosomes feature a large degree of structural variability, which has hampered to resolve the structure of these assemblies with atomic resolution to date. In order to reduce the sample heterogeneity researchers either developed mutants with better controlled pigment content, or synthesized chemically well-defined model systems that structurally resemble their natural counterparts. Though, the structure of the chlorosomes is still a matter of an ongoing debate.Owing to the intermolecular interactions between the monomers, the lowest electronically excited states of such molecular assemblies are described as Frenkel excitons, which correspond to delocalised excitations that are coherently shared by many molecules. Since the photophysical properties of such exciton states depend crucially on the mutual arrangement of the pigments, information about the supramolecular organisation can be accessed also by optical spectroscopy. However, the great heterogeneity of the samples leads to inhomogeneous broadening of the spectra and subtle features, that might be charateristic for specific structural properties, are masked due to ensemble averaging.Aim of this project is a systematic study of natural (wild type and mutants) as well as artificial chlorosomes by single-molecule spectroscopic techniques. This includes absorption, fluorescence-excitation, and emission spectroscopy as well as the development of circular dichroism spectroscopy on an individual object. This approach will minimize the ensemble heterogeneity and provide information about the spectral positions of the exciton transitions, the relative intensity ratios of the exciton transitions, the mutual orientation of their transition-dipole moments, and the chirality of the pigment arrangement. In parallel, the experimental results will be compared with the predictions from computer simulations that will be conducted as a function of the geometrical arrangement of the monomers. Our goal is to discriminate between the various structural models discussed in the literature and to find out whether there is a systematic variation of the morphology of the chlorosomes as a function of the pigment composition.
光合作用的成功激发了许多研究人员研究用于太阳能转化的有机物质。然而,一个简单的数量级估计表明,在最佳条件下,一个典型的有机分子每秒只吸收几个光子。因此,使用有机物质进行任何类型的太阳能驱动的能源生产都需要一个有效的光收集装置-天线-用于收集尽可能多的光子。自然界中发现的最有效的天线系统之一是绿硫细菌,它们在极低的光照条件下进行光合作用。在那里,光被吸收在细菌叶绿素分子的超分子排列中,这些细菌叶绿素分子被称为绿色体。不幸的是,叶绿体具有很大程度的结构变异性,这阻碍了解决这些组件的结构与原子分辨率的日期。为了减少样品的异质性,研究人员要么开发了具有更好控制的色素含量的突变体,要么合成了化学上定义明确的模型系统,这些系统在结构上类似于它们的天然对应物。由于单体之间的分子间相互作用,这种分子组装体的最低电子激发态被描述为Frenkel激子,它对应于许多分子相干共享的离域激发。由于这种激子态的物理性质主要取决于颜料的相互排列,因此也可以通过光谱学获得有关超分子组织的信息。然而,样品的巨大异质性导致光谱的不均匀加宽,并且由于系综平均,可能是特定结构性质的特征的细微特征被掩盖。本项目的目的是通过单分子光谱技术对天然(野生型和突变体)以及人工绿质体进行系统研究。这包括吸收,荧光激发和发射光谱,以及对单个物体的圆二色光谱的开发。这种方法将最大限度地减少系综异质性,并提供有关激子跃迁的光谱位置,激子跃迁的相对强度比,它们的过渡偶极矩的相互取向,以及颜料排列的手性的信息。同时,将实验结果与计算机模拟的预测进行比较,计算机模拟将作为单体几何排列的函数进行。我们的目标是区分在文献中讨论的各种结构模型,并找出是否有一个系统的变化的色素组合物的功能的绿体的形态。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes.
仿生光捕获纳米管的光谱和结构变化
  • DOI:
    10.1021/acs.jpclett.9b00303
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Löhner;T. Kunsel;M. I. S. Röhr;T. L. C. Jansen;S. Sengupta;F. Würthner;J. Knoester;J. Köhler
  • 通讯作者:
    J. Köhler
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jürgen Köhler其他文献

Professor Dr. Jürgen Köhler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jürgen Köhler', 18)}}的其他基金

Monitoring diffusion processes in nanoporous block copolymer membranes with high spatial and temporal resolution
以高空间和时间分辨率监测纳米多孔嵌段共聚物膜中的扩散过程
  • 批准号:
    253503811
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Single-Molecule Studies on Purple Bacterial Antenna Complexes
紫色细菌天线复合物的单分子研究
  • 批准号:
    81329493
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hierarchical Self-organization of Cyclic Chromophore Arrays for Artificial Light Harvesting
用于人工光采集的循环发色团阵列的分层自组织
  • 批准号:
    19554624
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ortsaufgelöste Dynamik des elektro-optischen Effekts in flüssigkristallinen Gelen
液晶凝胶中电光效应的空间分辨动力学
  • 批准号:
    13491756
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Units
One- and two photon single-molecule spectroscopy of excited electronic states in conjugated polymers
共轭聚合物中激发电子态的一光子和双光子单分子光谱
  • 批准号:
    5391588
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
All-optical logic circuits based on photochromic building blocks using waveguide structures
基于使用波导结构的光致变色构件的全光逻辑电路
  • 批准号:
    448846348
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of quantum coherences in photosynthetic light-harvesting complexes via ultrafast single-molecule spectroscopy
通过超快单分子光谱研究光合作用光捕获复合物中的量子相干性
  • 批准号:
    450722431
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
  • 批准号:
    DP240103271
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了