EAGER: Probabilistic Models and Algorithms
EAGER:概率模型和算法
基本信息
- 批准号:1749864
- 负责人:
- 金额:$ 12.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The power of randomness in the computational context is one of the key discoveries of computer science. This project studies algorithms for fundamental problems that will further explore and use such power offered by randomness. One example of such a basic problem considered is in facility location: how can we place facilities at a low cost in order to minimize the total commute time for the customers? This classical problem has significant modern applications as well: e.g., in clustering data for machine learning, and in placing services on the Internet cloud. The PI aims to resolve how best this -- and closely-related problems in clustering and facility location -- can be solved via new probabilistic techniques. The PI will also study other such fundamental problems (e.g., in efficient resource allocation) in optimization through randomized algorithms, as well as study how such investigations improve and/or develop broadly-applicable probabilistic techniques. This project aims to have broader impact also through human-resource development. A graduate student will be directly involved in almost all this proposed research. The PI has advised two multi-year ``Gemstone" undergraduate research teams: both teams have had their research published in national conferences. The PI proposes to start advising a new such team around 2018 and continue to expose them to the interplay between algorithms, randomness, and networks. Furthermore, the PI will mentor two high-school students; these students will continue to learn algorithms, randomness and applications from their basics up to cutting-edge research. The research of one of these high-school students, co-mentored by the PI, was invited to compete in the Intel International Science and Engineering Fair in 2017. A substantial part of this project will be on developing improved approximation algorithms through (new techniques in) randomization: approximation algorithms are those that are provably efficient and deliver solutions that are within a provable distance from optimal. Two representative examples of problems considered in this regard are in facility location (opening a subset of a given set of facilities in order to minimize the sum of the facility-opening costs and the total commute-time of the customers, as well as variants of this classical problem), and assigning jobs to servers in a general setting, in order to minimize the sum of the completion times of the jobs (weighted by individual priorities of the jobs). Methodologically, this project proposes to develop new techniques to carefully "round" infeasible solutions to feasible solutions via randomization, to further understand the power of information-theoretic notions (e.g., when one has a range of choices of probability distribution for the random choices to be made, can choosing a distribution that maximizes the entropy offer additional power?), and the interplay between linear-algebraic and probabilistic arguments. The "rounding" approach is flexible and general: e.g., for the facility location and job-assignment problems, it is computationally easy to start with near-optimal but infeasible solutions, and the key open question is how to optimally round to a feasible solution. Advances in such rounding techniques have had numerous consequences in approximation algorithms; a key goal of this project is to contribute to further such advances.
计算环境中随机性的力量是计算机科学的关键发现之一。这个项目研究基本问题的算法,将进一步探索和使用随机性提供的这种力量。这样一个基本问题的一个例子是在设施的位置:我们如何放置设施,以低成本,以尽量减少总通勤时间的客户?这个经典问题也有重要的现代应用:例如,用于机器学习的数据聚类,以及将服务放在互联网云上。PI旨在解决如何最好地解决这一问题-以及集群和设施位置中密切相关的问题-可以通过新的概率技术来解决。PI还将研究其他此类基本问题(例如,在有效的资源分配)在优化通过随机算法,以及研究如何改善和/或发展广泛适用的概率技术这样的调查。该项目旨在通过人力资源开发产生更广泛的影响。研究生将直接参与几乎所有这些拟议的研究。PI为两个多年的“宝石”本科研究团队提供了建议:两个团队的研究都在全国会议上发表。PI建议在2018年左右开始建议一个新的团队,并继续让他们接触算法,随机性和网络之间的相互作用。此外,PI将指导两名高中生;这些学生将继续学习算法,随机性和应用,从基础到前沿研究。其中一名高中生的研究,由PI共同指导,被邀请参加2017年的英特尔国际科学与工程博览会。 该项目的一个重要部分将是通过(新技术)随机化开发改进的近似算法:近似算法是那些可证明有效的算法,并提供距离最佳可证明距离内的解决方案。在这方面考虑的两个有代表性的问题是设施选址问题(打开给定设施集合的子集,以便最小化设施打开成本和客户的总通勤时间的总和,以及该经典问题的变体),并在一般设置中将作业分配给服务器,以便最小化作业的完成时间之和(由作业的各个优先级加权)。在方法上,该项目提出开发新技术,通过随机化将不可行的解决方案仔细地“舍入”为可行的解决方案,以进一步理解信息理论概念的力量(例如,当一个人对于要做出的随机选择具有一系列概率分布的选择时,选择使熵最大化的分布能够提供额外的功率吗?),以及线性代数和概率论之间的相互作用。“四舍五入”方法灵活且通用:例如,对于设施选址和作业分配问题,从接近最优但不可行的解开始计算是容易的,关键的开放问题是如何最优地舍入到可行解。这种舍入技术的进步已经在近似算法中产生了许多后果;本项目的一个关键目标是促进进一步的这种进步。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Randomized Approximation Technique for Resource-Allocation Problems
资源分配问题的随机逼近技术
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Saha, Barna;Srinivasan, Aravind
- 通讯作者:Srinivasan, Aravind
Algorithms to Approximate Column-sparse Packing Problems
- DOI:10.1145/3355400
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Brian Brubach;Karthik Abinav Sankararaman;A. Srinivasan;Pan Xu
- 通讯作者:Brian Brubach;Karthik Abinav Sankararaman;A. Srinivasan;Pan Xu
Hierarchical Scheduling Algorithms with Throughput Guarantees and Low Delay
保证吞吐量、低延迟的分层调度算法
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Swamy, Peruru S;Srinivasan, Aravind;Ganti, Radha K;Jagannathan, Krishna
- 通讯作者:Jagannathan, Krishna
Allocation Problems in Ride Sharing Platforms: Online Matching with Offline Reusable Resources
乘车共享平台的分配问题:线上匹配线下可复用资源
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dickerson, John P.;Sankararaman, Karthik A.;Srinivasan, Aravind;Xu, Pan
- 通讯作者:Xu, Pan
Improved Bounds in Stochastic Matching and Optimization
- DOI:10.1007/s00453-017-0383-4
- 发表时间:2017-10
- 期刊:
- 影响因子:1.1
- 作者:Alok Baveja;Amit Chavan;Andrei Nikiforov;A. Srinivasan;Pan Xu
- 通讯作者:Alok Baveja;Amit Chavan;Andrei Nikiforov;A. Srinivasan;Pan Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aravind Srinivasan其他文献
Scheduling on Unrelated Machines under Tree-Like Precedence Constraints
- DOI:
10.1007/s00453-007-9004-y - 发表时间:
2007-09-15 - 期刊:
- 影响因子:0.700
- 作者:
V. S. Anil Kumar;Madhav V. Marathe;Srinivasan Parthasarathy;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
Concentration of Submodular Functions Under Negative Dependence
负依赖下子模函数的集中
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sharmila Duppala;George Z. Li;Juan Luque;Aravind Srinivasan;Renata Valieva - 通讯作者:
Renata Valieva
Approximating weighted completion time via stronger negative correlation
- DOI:
10.1007/s10951-023-00780-y - 发表时间:
2023-03-30 - 期刊:
- 影响因子:1.800
- 作者:
Alok Baveja;Xiaoran Qu;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
A constructive algorithm for the LLL on permutations
排列上 LLL 的构造性算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David G. Harris;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
The local nature of Δ-coloring and its algorithmic applications
- DOI:
10.1007/bf01200759 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Alessandro Panconesi;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
Aravind Srinivasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aravind Srinivasan', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918749 - 财政年份:2020
- 资助金额:
$ 12.9万 - 项目类别:
Continuing Grant
FOCS Conference Student and Postdoc Travel Support
FOCS 会议学生和博士后旅行支持
- 批准号:
1746451 - 财政年份:2017
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
FOCS Conference Student Travel Support
FOCS 会议学生旅行支持
- 批准号:
1647461 - 财政年份:2016
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
AF: Small: Randomized Algorithms and Stochastic Models
AF:小:随机算法和随机模型
- 批准号:
1422569 - 财政年份:2014
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
NetSE: Large: Collaborative Research: Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
- 批准号:
1010789 - 财政年份:2010
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS-NBD: An Integrated Approach to Computing Capacity and Developing Efficient Cross-Layer Protocols for Wireless Networks
合作研究:NeTS-NBD:计算能力和开发高效无线网络跨层协议的综合方法
- 批准号:
0626636 - 财政年份:2006
- 资助金额:
$ 12.9万 - 项目类别:
Continuing Grant
Probabilistic Approaches in Combinatorial Optimization
组合优化中的概率方法
- 批准号:
0208005 - 财政年份:2002
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 12.9万 - 项目类别:
Studentship
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Particle systems, growth models and their probabilistic structures
粒子系统、生长模型及其概率结构
- 批准号:
EP/W032112/1 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
Evaluating probabilistic inferential models of learnt sound representations in auditory cortex
评估听觉皮层中学习的声音表征的概率推理模型
- 批准号:
BB/X013391/1 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
- 批准号:
10622713 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
- 批准号:
2238375 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
- 批准号:
23K03773 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:
2211907 - 财政年份:2022
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant
Disaster Resilience of Urban Communities in Canada: New Probabilistic Models and Computational Methods
加拿大城市社区的抗灾能力:新的概率模型和计算方法
- 批准号:
RGPIN-2019-03991 - 财政年份:2022
- 资助金额:
$ 12.9万 - 项目类别:
Discovery Grants Program - Individual
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2022
- 资助金额:
$ 12.9万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




