AF: Small: Randomized Algorithms and Stochastic Models
AF:小:随机算法和随机模型
基本信息
- 批准号:1422569
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fundamental role played by randomness in computation is one of the key discoveries of research in algorithms and complexity over the last four decades. This manifests itself in at least two ways: through randomized algorithms, and through stochastic models for uncertain data and/or processes. This fundamental role has been accentuated in our Big Data age through tools such as sampling which are vital for streaming and sub-linear algorithms, as well as through the stochasticity that is often inherent in machine learning. In this project, the PI aims to develop or improve some basic techniques in randomized algorithms and stochastic optimization, as well as to apply them to classical and modern problems in combinatorial optimization.The broader impact of this project will be in several directions including the following. Graduate students will be involved closely in this research, and undergraduate research teams will be exposed to related ideas in algorithms, probabilistic methods, and optimization. High-school students will be taught the foundations of this research, especially the Lovasz Local Lemma and its facets, both through individual mentoring and through group-based teaching. Appropriate aspects of this work will be integrated into the PI's classes. Finally, this work will extend to key applications in areas including vaccination problems and the operation of alternative-energy plants.This project aims to develop tools that will be general and useful in their own right, as well as techniques that will lead to improvements for targeted, fundamental applications. These applications include well-known problems in combinatorial optimization including asymmetric traveling salesperson, k-median, and stochastic matching, as well as basic issues in application areas such as public health and social networks (vaccination) and alternative energy (operations planning for wind and solar energy plants under stochastic uncertainty). The proposed techniques encompass "going beyond" the powerful Lovasz Local Lemma, new iterated applications of Local Lemma-like techniques and their generalizations to problems such as asymmetric traveling salesperson, the nexus of dependent rounding, submodularity, and (matrix) concentration bounds, as well as new types of differential-equation techniques in discrete optimization. As a particular example, work of the PI and his collaborators has shown that the Moser-Tardos algorithm has facets that can help us get well beyond what is guaranteed by the Lovasz Local Lemma; this project aims to go significantly further in this broad direction, with the goal that generalizations of a powerful tool such as the Local Lemma will have new applications in discrete optimization.
随机性在计算中所扮演的基本角色是过去四十年来算法和复杂性研究的关键发现之一。这表现在至少两个方面:通过随机算法,并通过随机模型的不确定数据和/或过程。在我们的大数据时代,这一基本作用通过对流和次线性算法至关重要的采样等工具以及机器学习中通常固有的随机性得到了强调。在这个项目中,PI的目的是发展或改进随机算法和随机优化的一些基本技术,以及将它们应用于经典和现代的组合优化问题。这个项目的更广泛的影响将在几个方向,包括以下几个方面。研究生将密切参与这项研究,本科研究团队将接触到算法,概率方法和优化的相关思想。高中学生将被教导这项研究的基础,特别是洛瓦兹本地引理及其方面,无论是通过个人辅导,并通过基于小组的教学。这项工作的适当方面将被纳入PI的课程。最后,这项工作将扩展到疫苗接种问题和替代能源工厂运营等领域的关键应用,该项目旨在开发通用和有用的工具,以及改进有针对性的基本应用的技术。这些应用包括组合优化中的著名问题,包括非对称旅行销售员,k-中位数和随机匹配,以及应用领域中的基本问题,如公共卫生和社交网络(疫苗接种)和替代能源(随机不确定性下的风能和太阳能发电厂的运营规划)。所提出的技术包括“超越”强大的Lovasz局部引理,新的迭代应用的局部引理样技术及其推广的问题,如不对称的旅行推销员,依赖舍入,子模块化的关系,和(矩阵)浓度界限,以及新类型的微分方程技术在离散优化。作为一个特殊的例子,PI和他的合作者的工作已经表明,Moser-Tardos算法的各个方面可以帮助我们远远超出Lovasz局部引理所保证的范围;这个项目的目标是在这个广泛的方向上走得更远,目标是将一个强大的工具,如局部引理的推广在离散优化中有新的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aravind Srinivasan其他文献
Scheduling on Unrelated Machines under Tree-Like Precedence Constraints
- DOI:
10.1007/s00453-007-9004-y - 发表时间:
2007-09-15 - 期刊:
- 影响因子:0.700
- 作者:
V. S. Anil Kumar;Madhav V. Marathe;Srinivasan Parthasarathy;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
Concentration of Submodular Functions Under Negative Dependence
负依赖下子模函数的集中
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sharmila Duppala;George Z. Li;Juan Luque;Aravind Srinivasan;Renata Valieva - 通讯作者:
Renata Valieva
Approximating weighted completion time via stronger negative correlation
- DOI:
10.1007/s10951-023-00780-y - 发表时间:
2023-03-30 - 期刊:
- 影响因子:1.800
- 作者:
Alok Baveja;Xiaoran Qu;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
A constructive algorithm for the LLL on permutations
排列上 LLL 的构造性算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David G. Harris;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
The local nature of Δ-coloring and its algorithmic applications
- DOI:
10.1007/bf01200759 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Alessandro Panconesi;Aravind Srinivasan - 通讯作者:
Aravind Srinivasan
Aravind Srinivasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aravind Srinivasan', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918749 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
FOCS Conference Student and Postdoc Travel Support
FOCS 会议学生和博士后旅行支持
- 批准号:
1746451 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Probabilistic Models and Algorithms
EAGER:概率模型和算法
- 批准号:
1749864 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FOCS Conference Student Travel Support
FOCS 会议学生旅行支持
- 批准号:
1647461 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NetSE: Large: Collaborative Research: Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
- 批准号:
1010789 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: NeTS-NBD: An Integrated Approach to Computing Capacity and Developing Efficient Cross-Layer Protocols for Wireless Networks
合作研究:NeTS-NBD:计算能力和开发高效无线网络跨层协议的综合方法
- 批准号:
0626636 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Probabilistic Approaches in Combinatorial Optimization
组合优化中的概率方法
- 批准号:
0208005 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209509 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: Accelerating Machine Learning via Randomized Automatic Differentiation
RI:小型:通过随机自动微分加速机器学习
- 批准号:
2007278 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Small: Randomized Matrix-Sketching Approaches for the Analysis of Massive Human Genomics Data
III:小:用于分析大量人类基因组数据的随机矩阵草图方法
- 批准号:
2006929 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
- 批准号:
2008686 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Feasibility and Acceptability of The Equus Effect: A Small Randomized Controlled Pilot Study of an Equine-facilitated Therapy
马科效应的可行性和可接受性:马科促进疗法的小型随机对照试点研究
- 批准号:
10060753 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Feasibility and Acceptability of The Equus Effect: A Small Randomized Controlled Pilot Study of an Equine-facilitated Therapy
马科效应的可行性和可接受性:马科促进疗法的小型随机对照试点研究
- 批准号:
10553614 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Feasibility and Acceptability of The Equus Effect: A Small Randomized Controlled Pilot Study of an Equine-facilitated Therapy
马科效应的可行性和可接受性:马科促进疗法的小型随机对照试点研究
- 批准号:
9889268 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Feasibility and Acceptability of The Equus Effect: A Small Randomized Controlled Pilot Study of an Equine-facilitated Therapy
马科效应的可行性和可接受性:马科促进疗法的小型随机对照试点研究
- 批准号:
10394705 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
CCF-BSF: AF: Small: New Randomized Approaches in Approximation Algorithms
CCF-BSF:AF:小:近似算法中的新随机方法
- 批准号:
1717947 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant














{{item.name}}会员




